Recently, the glucose-stimulated insulin release of isolated human islets has been shown to deteriorate progressively with advancing donor age. This decline in beta cell function with aging may contribute to the increasing development of IGT and type 2 diabetes and also to the progressive nature of the disease. This study was to see whether there is any change in expression of beta cell function-related genes in islets with aging. Islets were isolated from young (2-month old) and old (22-24-month old) LETO rats and C57BL/6N mice. The in vitro GSIR index was significantly lower in islets from old mice compared with young mice. In real-time RT-PCR, PDX-1, insulin, GLUT2 and prohormone convertase 1/3 gene expression in islets was markedly lower in old rats (33%, 13%, 20% and 34%, respectively) and old mice (56%, 42%, 28% and 22%, respectively) compared with young animals. On the other hand, genes not specifically related to beta cell-specific function, such as caspase 3, superoxide dismutase 2 and glycerol kinase were not significantly different in expression in islets according to age. In conclusion, with increasing age, insulin secretory function of islets deteriorates accompanied with a decrease in expression of beta cell-specific genes including PDX-1.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.diabres.2007.01.049 | DOI Listing |
iScience
January 2025
Mammalian Embryo and Stem Cell Group, University of Cambridge, Department of Physiology, Development and Neuroscience, Downing Street, Cambridge CB2 3DY, UK.
The implantation of the mouse blastocyst initiates a complex sequence of tissue remodeling and cell differentiation events required for morphogenesis, during which the extraembryonic primitive endoderm transitions into the visceral endoderm. Through single-cell RNA sequencing of embryos at embryonic day 5.0, shortly after implantation, we reveal that this transition is driven by dynamic signaling activities, notably the upregulation of BMP signaling and a transient increase in Sox7 expression.
View Article and Find Full Text PDFJ Clin Exp Hepatol
December 2024
Biochemistry and Molecular Biology Department, Theodor Bilharz Research Institute, Giza, Egypt.
Background: Liver fibrosis is a serious global health issue, but current treatment options are limited due to a lack of approved therapies capable of preventing or reversing established fibrosis.
Aim: This study investigated the antifibrotic effects of a synthetic peptide derived from α-lactalbumin in a mouse model of thioacetamide (TAA)-induced liver fibrosis.
Methods: analyses were conducted to assess the physicochemical properties, pharmacophore features, and docking interactions of the peptide.
RSC Chem Biol
January 2025
Department of Chemistry, Emory University Atlanta GA 30322 USA
Members of the old yellow enzyme (OYE) family utilize a flavin mononucleotide cofactor to catalyze the asymmetric reduction of activated alkenes. The 2-enoate reductase (2-ER) subfamily are of particular industrial relevance as they can reduce α/β alkenes near electron-withdrawing groups. While the broader OYE family is being extensively explored for biocatalytic applications, oxygen sensitivity and poor expression yields associated with the presence of an Fe/S cluster in 2-ERs have hampered their characterization.
View Article and Find Full Text PDFCytotechnology
April 2025
Department of Critical Care Medicine, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), No. 1017, North Dongmen Road, Luohu District, Shenzhen, 518020 Guangdong China.
This study aimed to investigate the role of circular RNAs (circRNAs) in sepsis-induced acute gastrointestinal injury (AGI), focusing on their potential as biomarkers and their involvement in disease progression. Peripheral blood samples from 14 patients with sepsis-induced AGI and healthy volunteers were collected. RNA sequencing was performed to profile circRNA and miRNA expression.
View Article and Find Full Text PDFRSC Med Chem
December 2024
Department of Gynecological Oncology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University Wuhan 430071 China
Estrogen receptor β (ERβ) is aberrantly expressed in castration-resistant prostate cancer (CRPC). Therefore, a diagnostic and therapeutic ERβ probe not only helps to reveal the complex role of ERβ in prostate cancer (PCa), but also promotes ERβ-targeted PCa therapy. Herein, we reported a novel ERβ-targeted near-infrared fluorescent probe D3 with both imaging and therapeutic functions, which had the advantages of high ERβ selectivity, good optical performance, and strong anti-interference ability.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!