Brassinin is a phytoalexin produced by plants from the family Brassicaceae that displays antifungal activity against a number of pathogens of Brassica species, including Leptosphaeria maculans (Desm.) Ces. et de Not. [asexual stage Phoma lingam (Tode ex Fr.) Desm.] and L. biglobosa. The interaction of a group of isolates of L. maculans virulent on brown mustard (Brassica juncea) with brassinin was investigated. The metabolic pathway for degradation of brassinin, the substrate selectivity of the putative detoxifying hydrolase, as well as the antifungal activity of metabolites and analogs of brassinin are reported. Brassinin hydrolase activity was detectable only in cell-free homogenates resulting from cultures induced with brassinin, N'-methylbrassinin, or camalexin. The phytoalexin camalexin was a substantially stronger inhibitor of these isolates than brassinin, causing complete growth inhibition at 0.5mM.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.phytochem.2007.03.020DOI Listing

Publication Analysis

Top Keywords

brassinin
8
leptosphaeria maculans
8
brown mustard
8
antifungal activity
8
detoxification phytoalexin
4
phytoalexin brassinin
4
brassinin isolates
4
isolates leptosphaeria
4
maculans pathogenic
4
pathogenic brown
4

Similar Publications

Escherichia coli is amongst the most frequent causative agent of nosocomial infections and the overexpression of the efflux pump gene acrB plays a major role in its resistance to various antibiotics. In this study, we evaluated two indole phytochemicals, camalexin and brassinin, as potential AcrB efflux pump inhibitors. Among these two phytochemicals, camalexin increased the accumulation of ethidium in acrB proficient E.

View Article and Find Full Text PDF

Cancer cachexia is a multifactorial condition that contributes to the death of about 20% of cancer patients. It has the potential to cause weight loss, reduction in muscle mass, and loss of fat tissue, significantly lowering the quality of life. Currently, there are no approved drugs for cancer cachexia.

View Article and Find Full Text PDF

Anticancer Potential of Indole Phytoalexins and Their Analogues.

Molecules

May 2024

Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia.

Indole phytoalexins, found in economically significant family plants, are synthesized in response to pathogen attacks or stress, serving as crucial components of plant defense mechanisms against bacterial and fungal infections. Furthermore, recent research indicates that these compounds hold promise for improving human health, particularly in terms of potential anticancer effects that have been observed in various studies. Since our last comprehensive overview in 2016 focusing on the antiproliferative effects of these substances, brassinin and camalexin have been the most extensively studied.

View Article and Find Full Text PDF

Though Brassinin is known to have antiangiogenic, anti-inflammatory, and antitumor effects in colon, prostate, breast, lung, and liver cancers, the underlying antitumor mechanism of Brassinin is not fully understood so far. Hence, in the current study, the apoptotic mechanism of Brassinin was explored in prostate cancer. Herein, Brassinin significantly increased the cytotoxicity and reduced the expressions of pro-Poly ADP-ribose polymerase (PARP), pro-caspase 3, and B-cell lymphoma 2 (Bcl-2) in PC-3 cells compared to DU145 and LNCaP cells.

View Article and Find Full Text PDF

Combined effects of two phytoalexins, brassinin and camalexin, on the cells of colorectal origin.

Toxicon

October 2023

Department of Animal Physiology and Toxicology, Faculty of Medicine, The John Paul II Catholic University of Lublin, 1I Konstantynów Str., 20-708, Lublin, Poland.

Brassinin and camalexin belong to phytoalexins, plant compounds generated in the response to stress. Both compounds are known to be cytotoxic to several cancer cell lines, mainly by inducing oxidative stress and subsequent apoptosis. In the presented study, cytotoxic effects of brassinin and camalexin, individually and, for the first time, after combined exposure, on the cells of normal (CCD-Co18) and cancer (Caco-2) lines originated from colorectal tissues and their proapoptotic impact on Caco-2 cells were studied.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!