The analysis of time-dependent fluorescence shifts of the bilayer probe 6-hexadecanoyl-2-(((2-(trimethylammonium)ethyl)methyl)amino)naphthalene chloride (Patman) offers valuable information on the hydration and dynamics of phospholipid headgroups. Quenching studies on vesicles composed of four phosphatidylcholines with different hydrocarbon chains (18:1c9/18:1c9, DOPC; 16:0/18:1c9, POPC; 18:1c9/16:0, OPPC; 18:1c6/18:1c6, PCDelta6) show that the chromophore of Patman is defined located at the level of the sn-1 ester-group in the phospholipid, which is invariant to the hydrocarbon chain. The so-called solvent relaxation (SR) approach as well as solid-state 2H NMR reveals that DOPC and PCDelta6 are more hydrated than POPC and OPPC. A strong dependence of SR kinetics on the position of double bond in the investigated fatty acid chains was observed. Apparently, the closer the double bond is located to the hydrated sn-1 ester-group, the more mobile this group becomes. This work demonstrates that the SR approach can report mobility changes within phospholipid bilayers with a remarkable molecular resolution.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemphyslip.2007.03.004 | DOI Listing |
ChemSusChem
January 2025
Central South University, College of Chemistry and Chemical Engineering, No.932 South Lushan Road, Yuelu District, 410083, Changsha, CHINA.
The tightly connected structure of polybenzimidazole (PBI) membrane can be relaxed by solvent/nonsolvent solution to achieve a high proton conductivity for vanadium redox flow battery (VRFB). However, the nature behind the solvent/nonsolvent strategy is not unraveled. This work proposes a guideline to analyze the effect of PBI membrane relaxing formulas based on the interactions between different components in membranes.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Université de Caen Normandie, ENSICAEN, CNRS, LCS, 14000 Caen, France.
Tumor hypoxia significantly limits the effectiveness of radiotherapy, as oxygen is crucial for producing cancer-killing reactive oxygen species. To address this, we synthesized nanosized faujasite (PBS-Na-FAU) zeolite crystals using clinical-grade phosphate-buffered saline (PBS) as the solvent, ensuring preserved crystallinity, microporous volume, and colloidal stability. The zeolite nanocrystals showed enhanced safety profiles and , and studies showed no apparent toxicity to animals.
View Article and Find Full Text PDFJ Phys Chem Lett
January 2025
State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China.
Flavonoids, a group of natural pigments, have attracted notable attention for their intrinsic fluorescent bioactive properties and potential therapeutic implications. Recent studies have suggested that the photoexcitation of specific flavonoids can also lead to the formation of triplet states, thereby potentially enhancing their applications in photoactivated antioxidant mechanisms. However, the crucial mechanism details about triplet state formation are still poorly understood.
View Article and Find Full Text PDFCarbohydr Polym
March 2025
College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China; School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou 510006, China. Electronic address:
The management of wounds infected with drug-resistant bacteria represents a significant challenge to public health globally. Nanotechnology-functionalized photothermal hydrogel with good thermal stability, biocompatibility and tissue adhesion exhibits great potential in treating these infected wounds. Herein, a novel photothermal hydrogel (mCS-Cu-Ser) was prepared through in situ mineralization in the hydrogel networks and ion cross-linking driven by copper ions (∼3 mM).
View Article and Find Full Text PDFChemphyschem
January 2025
IISER Bhopal: Indian Institute of Science Education and Research Bhopal, Department of Chemistry, Bhopal Bypass Road, Bhauri, 462066, Bhopal, INDIA.
Aggregation-caused quenching (ACQ) reduces luminescence and compromises brightness in solid-state displays, necessitating strategies to mitigate its effects for enhanced performance. This study presents cost-effective method to mitigate ACQ of pyrene by co-assembling polycyclic aromatic hydrocarbons within low molecular weight gelator. Synthesized from readily available materials-cholesteryl chloroformate and pentaerythritol-in one-step reaction, gelator incorporates four cholesteryl units, reported to promote robust supramolecular gels in various solvents.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!