A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Sphingosine 1-phosphate pKa and binding constants: intramolecular and intermolecular influences. | LitMetric

Sphingosine 1-phosphate pKa and binding constants: intramolecular and intermolecular influences.

J Mol Graph Model

Department of Chemistry and Computational Research on Materials Institute, The University of Memphis, Memphis, TN 38152, United States.

Published: September 2007

The dissociation constant for an ionizable ligand binding to a receptor is dependent on its charge and therefore on its environmentally-influenced pKa value. The pKa values of sphingosine 1-phosphate (S1P) were studied computationally in the context of the wild type S1P1 receptor and the following mutants: E3.29Q, E3.29A, and K5.38A. Calculated pKa values indicate that S1P binds to S1P1 and its site mutants with a total charge of -1, including a +1 charge on the ammonium group and a -2 charge on the phosphate group. The dissociation constant of S1P binding to these receptors was studied as well. The models of wild type and mutant proteins originated from an active receptor model that was developed previously. We used ab initio RHF/6-31+G(d) to optimize our models in aqueous solution, where the solvation energy derivatives are represented by conductor-like polarizable continuum model (C-PCM) and integral equation formalism polarizable continuum model (IEF-PCM). Calculation of the dissociation constant for each mutant was determined by reference to the experimental dissociation constant of the wild type receptor. The computed dissociation constants of the E3.29Q and E3.29A mutants are three to five orders of magnitude higher than those for the wild type receptor and K5.38A mutant, indicating vital contacts between the S1P phosphate group and the carboxylate group of E3.29. Computational dissociation constants for K5.38A, E3.29A, and E3.29Q mutants were compared with experimentally determined binding and activation data. No measurable binding of S1P to the E3.29A and E3.29Q mutants was observed, supporting the critical contacts observed computationally. These results validate the quantitative accuracy of the model.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2040500PMC
http://dx.doi.org/10.1016/j.jmgm.2007.03.004DOI Listing

Publication Analysis

Top Keywords

dissociation constant
16
wild type
16
sphingosine 1-phosphate
8
pka values
8
e329q e329a
8
phosphate group
8
polarizable continuum
8
continuum model
8
type receptor
8
dissociation constants
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!