Under conditions of iron deficiency, graminaceous plants induce the expression of genes involved in the biosynthesis of mugineic acid family phytosiderophores. We previously identified the novel cis-acting elements IDE1 and IDE2 (iron-deficiency-responsive element 1 and 2) through promoter analysis of the barley (Hordeum vulgare L.) iron-deficiency-inducible IDS2 gene in tobacco (Nicotiana tabacum L.). To gain further insight into plant gene regulation under iron deficiency, we analyzed the barley iron-deficiency-inducible IDS3 gene, which encodes mugineic acid synthase. IDS3 promoter fragments were fused to the beta-glucuronidase (GUS) gene, and this construct was introduced into Arabidopsis thaliana L. and tobacco plants. In both Arabidopsis and tobacco, GUS activity driven by the IDS3 promoter showed strongly iron-deficiency-inducible and root-specific expression. Expression occurred mainly in the epidermis of Arabidopsis roots, whereas expression was dominant in the pericycle, endodermis, and cortex of tobacco roots, resembling the expression pattern conferred by IDE1 and IDE2. Deletion analysis revealed that a sequence within -305 nucleotides from the translation start site was sufficient for specific expression in both Arabidopsis and tobacco roots. Gain-of-function analysis revealed functional regions at -305/-169 and -168/-93, whose coexistence was required for the induction activity in Arabidopsis roots. Multiple IDE-like sequences were distributed in the IDS3 promoter and were especially abundant within the functional region at -305/-169. A sequence moderately homologous to that of IDE1 was also present within the -168/-93 region. These IDE-like sequences would be the first candidates for the functional iron-deficiency-responsive elements in the IDS3 promoter.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.plaphy.2007.03.007 | DOI Listing |
Plant Mol Biol
October 2024
Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, 1-308 Suematsu, Nonoichi, Ishikawa, 921-8836, Japan.
Plant biomass can significantly contribute to alternative energy sources. Sorghum bicolor is a promising plant for producing energy, but is susceptible to iron deficiency, which inhibits its cultivation in iron-limiting calcareous soils. The molecular basis for the susceptibility of sorghum to iron deficiency remains unclear.
View Article and Find Full Text PDFFront Plant Sci
October 2019
Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, Ishikawa, Japan.
Iron (Fe) is an essential micronutrient for plants. Plants encounter Fe deficiency when grown in calcareous soil with low Fe availability, leading to reduced crop yield and agricultural problem. Rice acquires Fe from the soil Strategy I-related system (ferrous ion uptake by OsIRT1) and Strategy II system (ferric ion uptake by chelation).
View Article and Find Full Text PDFRice (N Y)
December 2013
Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, 1-308 Suematsu, Nonoichi, Ishikawa 921-8836, Japan.
More than 2 billion people suffer from iron (Fe) deficiency, and developing crop cultivars with an increased concentration of micronutrients (biofortification) can address this problem. In this review, we describe seven transgenic approaches, and combinations thereof, that can be used to increase the concentration of Fe in rice seeds. The first approach is to enhance the Fe storage capacity of grains through expression of the Fe storage protein ferritin under the control of endosperm-specific promoters.
View Article and Find Full Text PDFFront Plant Sci
May 2013
Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University Ishikawa, Japan ; Graduate School of Agricultural and Life Sciences, The University of Tokyo Tokyo, Japan.
Iron deficiency is a serious problem around the world, especially in developing countries. The production of iron-biofortified rice will help ameliorate this problem. Previously, expression of the iron storage protein, ferritin, in rice using an endosperm-specific promoter resulted in a two-fold increase in iron concentration in the resultant transgenic seeds.
View Article and Find Full Text PDFPlant Physiol Biochem
May 2007
Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!