Laminin-incorporated nerve conduits made by plasma treatment for repairing spinal cord injury.

Biochem Biophys Res Commun

Neurosurgery Neurological Institute, Taipei Veterans General Hospital, National Taiwan University, Taipei 10617, Taiwan.

Published: June 2007

To better direct the repair of damaged axons following spinal cord injury (SCI), we designed a nerve conduit (NC) modeled after the intact spinal cord, which would enable the axons to cross the lesioned area to rejoin on the other side. The NC consisted of a porous chitosan scaffold and was incorporated with laminin (LN) on the inner surface through oxygen plasma treatment. According to the BBB, CBS, and treadmill analyses, we found that following the implantation of the laminin-coated NC (LN-NC) the rats showed a tendency towards behavior improvement and functional recovery. Histology and immunocytochemical analyses indicated that the NC groups were capable of leading the damaged axons through the lesioned area without triggering inflammation or apoptosis. Together with the significantly enhanced expression of local GAP-43 in the LN-NC groups, as evidenced by western blot analysis, axon re-growth mediated by LN-NC was found to compare better than that by NC group. These results suggest a new possible approach to repairing SCI and, in general, a model which will be useful for other multidisciplinary procedures for complex neurological situations.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2007.04.049DOI Listing

Publication Analysis

Top Keywords

spinal cord
12
plasma treatment
8
cord injury
8
damaged axons
8
lesioned area
8
laminin-incorporated nerve
4
nerve conduits
4
conduits plasma
4
treatment repairing
4
repairing spinal
4

Similar Publications

Purpose Of The Review: In the United States, spinal cord injuries affect approximately 18,000 individuals annually, most commonly resulting from mechanical trauma. The consequent paraplegia severely impairs motor functions, creating an urgent need for innovative therapeutic strategies that extend beyond traditional rehabilitation and pharmacotherapy. This review assesses the effectiveness of Spinal Cord Stimulation (SCS) in improving motor function in patients with spinal cord injuries, with a particular focus on paraplegia.

View Article and Find Full Text PDF

rsfMRI-based brain entropy is negatively correlated with gray matter volume and surface area.

Brain Struct Funct

January 2025

Department of Diagnostic Radiology & Nuclear Medicine, University of Maryland School of Medicine, 670 W Baltimore St, HSF III, R1173, Baltimore, MD, 21202, USA.

The brain entropy (BEN) reflects the randomness of brain activity and is inversely related to its temporal coherence. In recent years, BEN has been found to be associated with a number of neurocognitive, biological, and sociodemographic variables such as fluid intelligence, age, sex, and education. However, evidence regarding the potential relationship between BEN and brain structure is still lacking.

View Article and Find Full Text PDF

Seipin Deficiency Impairs Motor Coordination in Mice by Compromising Spinal Cord Myelination.

Neuromolecular Med

January 2025

Department of Anatomy, School of Basic Medical Sciences, Shanxi Medical University, No 56, Xinjian Nan Road, Taiyuan, 030001, Shanxi, China.

The integrity of the myelin sheath of the spinal cord (SC) is essential for motor coordination. Seipin is an endoplasmic reticulum transmembrane protein highly expressed in adipose tissue and motor neurons in the SC. It was reported Seipin deficiency induced lipid dysregulation and neurobehavioral deficits, but the underlying mechanism, especially in SC, remains to be elucidated.

View Article and Find Full Text PDF

Locomotion is controlled by spinal circuits that interact with supraspinal drives and sensory feedback from the limbs. These sensorimotor interactions are disrupted following spinal cord injury. The thoracic lateral hemisection represents an experimental model of an incomplete spinal cord injury, where connections between the brain and spinal cord are abolished on one side of the cord.

View Article and Find Full Text PDF

This proceedings article summarizes the inaugural "T Cells in the Brain" symposium held at Columbia University. Experts gathered to explore the role of T cells in neurodegenerative diseases. Key topics included characterization of antigen-specific immune responses, T cell receptor (TCR) repertoire, microbial etiology in Alzheimer's disease (AD), and microglia-T cell crosstalk, with a focus on how T cells affect neuroinflammation and AD biomarkers like amyloid beta and tau.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!