Yeasts are often exposed to variations in osmotic pressure in their natural environments or in their substrates when used in fermentation industries. Such changes may lead to cell death or activity loss. Although the involvement of the plasma membrane is strongly suspected, the mechanism remains unclear. Here, the integrity and functionality of the yeast plasma membrane at different levels of dehydration and rehydration during an osmotic treatment were assessed using various fluorescent dyes. Flow cytometry and confocal microscopy of cells stained with oxonol, propidium iodide, and lucifer yellow were used to study changes in membrane polarization, permeabilization, and endocytosis, respectively. Cell volume contraction, reversible depolarization, permeabilization, and endovesicle formation were successively observed with increasing levels of osmotic pressure during dehydration. The maximum survival rate was also detected at a specific rehydration level, of 20 MPa, above which cells were strongly permeabilized. Thus, we show that the two steps of an osmotic treatment, dehydration and rehydration, are both involved in the induction of cell death. Permeabilization of the plasma membranes is the critical event related to cell death. It may result from lipidic phase transitions in the membrane and from variations in the area-to-volume ratio during the osmotic treatment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbamem.2007.03.017 | DOI Listing |
Cancer Cell Int
January 2025
Department of Toxicology, Faculty of Medical Science, Tarbiat Modares University, Tehran, Iran.
Background: Cancer remains a leading cause of death worldwide. Environmental factors, specifically endocrine-disrupting chemicals (EDCs), like phthalates, are increasingly being linked to cancer development. Phthalates, widely used in consumer products, can activate the aryl hydrocarbon receptor (AhR).
View Article and Find Full Text PDFJ Neuroinflammation
January 2025
Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA.
Background: The retinal degenerative diseases retinitis pigmentosa (RP) and atrophic age- related macular degeneration (AMD) are characterized by vision loss from photoreceptor (PR) degeneration. Unfortunately, current treatments for these diseases are limited at best. Genetic and other preclinical evidence suggest a relationship between retinal degeneration and inflammation.
View Article and Find Full Text PDFJ Transl Med
January 2025
Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
Background: Tumor microenvironment (TME), particularly immune cell infiltration, programmed cell death (PCD) and stress, has increasingly become a focal point in colorectal cancer (CRC) treatment. Uncovering the intricate crosstalk between these factors can enhance our understanding of CRC, guide therapeutic strategies, and improve patient prognosis.
Methods: We constructed an immune-related cell death and stress (ICDS) prognostic model utilizing machine learning methodologies.
J Transl Med
January 2025
Department of Cardiovascular Ultrasound, The First Hospital of China Medical University, Shenyang, China.
In patients with acute myocardial infarction (AMI), thrombolytic therapy and revascularization strategies allow complete recanalization of occluded epicardial coronary arteries. However, approximately 35% of patients still experience myocardial ischemia/reperfusion (I/R) injury, which contributing to increased AMI mortality. Therefore, an accurate understanding of myocardial I/R injury is important for preventing and treating AMI.
View Article and Find Full Text PDFBMC Neurosci
January 2025
Department of Operative Dentistry and Periodontology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany.
Background: Parkinson's disease (PD) is a neurodegenerative disorder characterized by protein aggregates mostly consisting of misfolded alpha-synuclein (αSyn). Progressive degeneration of midbrain dopaminergic neurons (mDANs) and nigrostriatal projections results in severe motor symptoms. While the preferential loss of mDANs has not been fully understood yet, the cell type-specific vulnerability has been linked to a unique intracellular milieu, influenced by dopamine metabolism, high demand for mitochondrial activity, and increased level of oxidative stress (OS).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!