In this review, an attempt has been made to throw light on the mechanism of action of colchicine and its different analogs as anti-cancer agents. Colchicine interacts with tubulin and perturbs the assembly dynamics of microtubules. Though its use has been limited because of its toxicity, colchicine can still be used as a lead compound for the generation of potent anti-cancer drugs. Colchicine binds to tubulin in a poorly reversible manner with high activation energy. The binding interaction is favored entropically. In contrast, binding of its simple analogs AC or DAAC is enthalpically favored and commences with comparatively low activation energy. Colchicine-tubulin interaction, which is normally pH dependent, has been found to be independent of pH in the presence of microtubule-associated proteins, salts or upon cleavage of carboxy termini of tubulin. Biphasic kinetics of colchicines-tubulin interaction has been explained in light of the variation in the residues around the drug-binding site on beta-tubulin. Using the crystal structure of the tubulin-DAMAcolchicine complex, a detailed discussion on the pharmacophore concept that explains the variation of affinity for different colchicine site inhibitors (CSI) has been discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/med.20097 | DOI Listing |
Chem Biodivers
January 2025
Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia.
Here, we report a synthesis of fluoroquinolones carrying a monoterpene moiety at the C7 position of aromatic structure. The minimal inhibitory concentrations of fluoroquinolone fused with trans-3-hydroxy-cis-myrtanylamine 18 against Staphylococcus aureus (MSSA isolates) were two- to eightfold lower compared to moxifloxacin, although fourfold higher against MRSA isolates. The fluoroquinolone fused with (-)-nopylamine 16 was four- to eightfold less active on MSSA compared to moxifloxacin, while had similar activity on MRSA.
View Article and Find Full Text PDFChem Biodivers
January 2025
Department of Pharmaceutical Chemistry, MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Ambala, India.
Quinolone antibiotics are a crucial class of synthetic antibacterial agents, widely utilized due to their broad spectrum of antibacterial activity. Due to the development of antimicrobial resistance, the potency of quinolone drugs decreased. Many conventional methods have been developed to elevate amination rate and to improve yield.
View Article and Find Full Text PDFFEBS J
January 2025
Department of Drug Design and Pharmacology, University of Copenhagen, Denmark.
The glucagon-like peptide-1 receptor (GLP-1R) plays an important role in regulating insulin secretion and reducing body weight, making it a prominent target in the treatment of type 2 diabetes and obesity. Extensive research on GLP-1R signaling has provided insights into the connection between receptor function and physiological outcomes, such as the correlation between Gs signaling and insulin secretion, yet the exact mechanisms regulating signaling remain unclear. Here, we explore the internalization pathway of GLP-1R, which is crucial for controlling insulin release and maintaining pancreatic beta-cell function.
View Article and Find Full Text PDFAMB Express
January 2025
Faculty of Basic Sciences, King Salman International University, South Sinai City, 46612, Egypt.
The rise of antimicrobial-resistant microorganisms (AMR) poses a significant global challenge to human health and economic stability. In response, various scientific communities are seeking safe alternatives to antibiotics. This study comprehensively investigates the antibacterial effects of red dye derived from Monascus purpureus against three bacterial pathogens: Salmonella typhimurium ATCC14028, Escherichia coli ATCC8739, and Enterococcus faecalis ATCC25923.
View Article and Find Full Text PDFCommun Biol
January 2025
Division of Geriatrics, Department of Medicine, SMPH, University of Wisconsin-Madison, Madison, WI, USA.
Changes in brain mitochondrial metabolism are coincident with functional decline; however, direct links between the two have not been established. Here, we show that mitochondrial targeting via the adiponectin receptor activator AdipoRon (AR) clears neurofibrillary tangles (NFTs) and rescues neuronal tauopathy-associated defects. AR reduced levels of phospho-tau and lowered NFT burden by a mechanism involving the energy-sensing kinase AMPK and the growth-sensing kinase GSK3b.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!