This paper investigated the photochemical behaviour of the herbicide norflurazon (NFL) in the presence of different soil colloidal components and several cyclodextrins (CDs). The interaction of NFL with CDs yielded the formation of inclusion complexes at 1:1 stoichiometric ratio in solution, with an increase of the herbicide solubility. The irradiation of NFL aqueous solutions in the presence of CDs showed that the higher the formation constant of NFL-CD complexes (Kc) and their solubility, the higher their photocatalytic effects, following the CDs in the order: RAMEB>HPBCD>beta-CD>alpha-CD>gamma-CD. The presence of the different soil colloidal components in aqueous suspension provoked the reduction of the NFL photodegradation rate, due to a screening effect, especially when goethite and humic acids were present. No disappearance of NFL was detected in parallel studies carried out in the dark, except in the case of humic acids, where a 5% adsorption of the initial amount of NFL was adsorbed in the dark control. The presence of the different CDs in such systems showed an inductive photodegradation effect on the herbicide. This could be largely explained by the inclusion effects of CDs in catalyzing interactions between NFL and certain reactive radicals generated by the different colloidal components. Although this work was carried out at laboratory scale and therefore, has limited applications, it reveals that cyclodextrins increase solubilization of hydrophobic herbicides and could lead to their increased photodegradation. This could be a promising method for pesticide-contaminated water remediation. However, it is important to consider the effect of the soil colloidal components in the different aquatic systems and their concentrations, since they can alter the photodegradative effects of the cyclodextrins.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2007.03.022 | DOI Listing |
Environ Sci Technol
January 2025
Section of Sanitary Engineering, Department of Water Management, Faculty of Civil Engineering and Geosciences, Delft University of Technology, Stevinweg 1, 2628 CN Delft, The Netherlands.
Photochemical weathering and eco-corona formation through natural organic matter (NOM) adsorption play vital roles in the aggregation tendencies of nanoplastics (NPs) in aquatic environments. However, it remains unclear how photochemical weathering alters the adsorption patterns of NOM and the conformation of the eco-corona, subsequently affecting the aggregation tendencies of NPs. This study examined the effect of Suwannee River NOM adsorption on the aggregation kinetics of pristine and photoaged polystyrene (PS) NPs in monovalent electrolyte solutions.
View Article and Find Full Text PDFSmall
January 2025
DWI-Leibniz Institute for Interactive Materials e.V., RWTH Aachen University, Forckenbeckstr. 50, 52074, Aachen, Germany.
Compartmentalization is crucial for control over complex biological cascade reactions. In microgels, the formation of discrete compartments allows for simultaneous uptake and orthogonal release of physicochemically distinct drugs, among others. However, many state-of-the-art approaches yielding compartmentalized microgels require the use of specific, though not always biocompatible, components and temperatures well above the physiological range, which may damage possible biological cargo.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, and School of Resources, Environment and Materials, Guangxi University, Nanning 530004, PR China. Electronic address:
Metal-organic frameworks (MOFs) due to abundant apertures, adjustable components, and multi-purpose structures have broad application prospects in supercapacitors. However, its low conductivity, poor stability, and difficulty growing evenly on the conductive substrate limit the electrochemical energy storage performance. Herein, with FeCoNi-OH nanosheets serving as the precursors, the trimetallic FeCoNi-MOF (FCNM) multilayer structure is successfully synthesized on activated carbon cloth (AC), and its optimal growth state (FCNM/AC-12 h) is achieved by regulating the reaction time.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China.
Coacervation based on liquid-liquid phase separation (LLPS) has been widely used for the preparation of artificial protocells and to mimic the dynamic organization of membrane-free organelles. Most complex synthetic coacervates are formed through electrostatic interactions but cannot withstand high ionic strength conditions (>0.1 M).
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, P. R. China.
Membrane distillation (MD) efficiently desalinizes and treats high-salinity water as well as addresses the challenges in handling concentrated brines and wastewater. However, silica scaling impeded the effectiveness of MD for treating hypersaline water and wastewater. Herein, the effects of humic acid (HA) on silica scaling behavior during MD are systematically investigated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!