GATE is a recent Monte Carlo code, based on GEANT4, and used in nuclear medicine mainly for imaging and detector design. Our goal was to implement dosimetry within GATE (i.e., combining the excellent potential of Gate for image modeling with GEANT4 dosimetric capabilities. The latest release of GEANT4 (4.8.1) completely revised the electron multiple scattering propagation algorithm. In this work, we calculated dose point kernels (DPK) for 0.01, 0.05, 0.1, 1, and 3 MeV monoenergetic electrons. We then compared our results with data obtained with another Monte Carlo code (MCNPX) or from the reference publication from Berger and Seltzer. To facilitate comparison, all calculated dose distributions were scaled to the corresponding R(CSDA), as given by the ESTAR NIST web database. Some GEANT4 parameters (i.e., Stepmax), or the shell thickness, had to be adjusted in order to achieve good agreement for energies below 1 MeV. For all energies except 10 keV, calculated DPKs do not differ significantly from the reference, as assessed by a Kolmogorov-Smirnov test. This preliminary step allowed us to consider the integration of GEANT4 dosimetric capabilities within the Gate framework.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1089/cbr.2007.304 | DOI Listing |
Int J Radiat Oncol Biol Phys
January 2025
National Cancer Institute, Bethesda, MD. Electronic address:
This white paper examines the potential of pioneering technologies and artificial intelligence (AI)-driven solutions in advancing clinical trials involving radiotherapy. As the field of radiotherapy evolves, the integration of cutting-edge approaches such as radiopharmaceutical dosimetry, FLASH radiotherapy, image-guided radiation therapy (IGRT), and AI promises to improve treatment planning, patient care, and outcomes. Additionally, recent advancements in quantum science, linear energy transfer/relative biological effect (LET/RBE), and the combination of radiotherapy and immunotherapy create new avenues for innovation in clinical trials.
View Article and Find Full Text PDFRadiat Environ Biophys
January 2025
Laboratory of Health Sciences and Technologies, Higher Institute of Health Sciences, Hassan First University, Settat, Morocco.
This study assesses radiation doses in multi-slice computed tomography (CT) using epoxy resin and PMMA phantoms, focusing on the relationship between TAR (tissue air ratio) and kilovoltage peak (kVp). The research was conducted using a Hitachi Supria 16-slice CT scanner. An epoxy resin phantom was fabricated from commercially available materials, to simulate human tissue.
View Article and Find Full Text PDFBiomed Phys Eng Express
January 2025
Mindanao Radiation Physics Center, MSU-Iligan Institute of Technology, Andres Bonifacio Street Tibanga, Iligan City, Lanao Norte, 9200, PHILIPPINES.
To accurately model and validate the 6 MV Elekta Compactlinear accelerator using the Geant4 Application for Tomographic Emission (GATE). In particular, this study focuses on the precise calibration and validation of critical parameters, including jaw collimator positioning, electron source nominal energy, flattening filter geometry, and electron source spot size, which are often not provided in technical documentation. Methods: Simulation of the Elekta Compact6 MV linear accelerator was performed using the Geant4 Application for Tomographic Emission (GATE) v.
View Article and Find Full Text PDFPhys Med Biol
December 2024
Department of Medical Radiation Physics, Carl von Ossietzky University Oldenburg, Oldenburg, Germany.
: Nuclear fragmentation generates a diverse dosimetric environment in the path ofC ion beams. Concise parametrization of the beam's composition is paramount for determining key correction factors in clinical dosimetry. This study sets out to provide such a parametrization based on detailed Monte Carlo simulations of clinically relevantC beams.
View Article and Find Full Text PDFEJNMMI Phys
December 2024
Medical Physics Group, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
Purpose: Clinical trials have yielded promising results for Lutetium Prostate Specific Membrane Antigen (Lu-PSMA) therapy in metastatic castration resistant prostate cancer (mCRPC) patients. However, the development of precise methods for internal dosimetry and accurate dose estimation has been considered ongoing research. This study aimed to calculate the absorbed dose to the critical organs and metastasis regions using GATE 9.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!