Perspectives on mobile robots as tools for child development and pediatric rehabilitation.

Assist Technol

LABORIUS-Research Laboratory on Mobile Robotics and Intelligent Systems, Department of Electrical Engineering and Computer Engineering, Université de Sherbrooke, Sherbrooke, Québec, Canada.

Published: June 2007

Mobile robots (i.e., robots capable of translational movements) can be designed to become interesting tools for child development studies and pediatric rehabilitation. In this article, the authors present two of their projects that involve mobile robots interacting with children: One is a spherical robot deployed in a variety of contexts, and the other is mobile robots used as pedagogical tools for children with pervasive developmental disorders. Locomotion capability appears to be key in creating meaningful and sustained interactions with children: Intentional and purposeful motion is an implicit appealing factor in obtaining children's attention and engaging them in interaction and learning. Both of these projects started with robotic objectives but are revealed to be rich sources of interdisciplinary collaborations in the field of assistive technology. This article presents perspectives on how mobile robots can be designed to address the requirements of child-robot interactions and studies. The authors also argue that mobile robot technology can be a useful tool in rehabilitation engineering, reaching its full potential through strong collaborations between roboticists and pediatric specialists.

Download full-text PDF

Source
http://dx.doi.org/10.1080/10400435.2007.10131863DOI Listing

Publication Analysis

Top Keywords

mobile robots
20
perspectives mobile
8
tools child
8
child development
8
pediatric rehabilitation
8
robots
6
mobile
5
robots tools
4
development pediatric
4
rehabilitation mobile
4

Similar Publications

Telerehabilitation and Its Impact Following Stroke: An Umbrella Review of Systematic Reviews.

J Clin Med

December 2024

Department of Public Health and Sport Sciences, Faculty of Health and Life Sciences, Medical School, University of Exeter, Exeter EX1 2LU, UK.

: To summarize the impact of various telerehabilitation interventions on motor function, balance, gait, activities of daily living (ADLs), and quality of life (QoL) among patients with stroke and to determine the existing telerehabilitation interventions for delivering physiotherapy sessions in clinical practice. : Six electronic databases were searched to identify relevant quantitative systematic reviews (SRs). Due to substantial heterogeneity, the data were analysed narratively.

View Article and Find Full Text PDF

Developing autonomous navigation techniques for surface vehicles remains an important research area, and accurate global path planning is essential. For mobile robots-particularly for Unmanned Surface Vehicles (USVs)-a key challenge is ensuring that sharp turns and sharp breaks are avoided. Therefore, global path planning must not only calculate the shortest path but also provide smoothness.

View Article and Find Full Text PDF

Inspection robots, which improve hazard identification and enhance safety management, play a vital role in the examination of high-risk environments in many fields, such as power distribution, petrochemical, and new energy battery factories. Currently, the position precision of the robots is a major barrier to their broad application. Exact kinematic model and control system of the robots is required to improve their location accuracy during movement on the unstructured surfaces.

View Article and Find Full Text PDF

An Improved Global and Local Fusion Path-Planning Algorithm for Mobile Robots.

Sensors (Basel)

December 2024

School of Electrical and Information Engineering, Jingjiang College, Jiangsu University, Zhenjiang 212013, China.

Path planning is a core technology for mobile robots. However, existing state-of-the-art methods suffer from issues such as excessive path redundancy, too many turning points, and poor environmental adaptability. To address these challenges, this paper proposes a novel global and local fusion path-planning algorithm.

View Article and Find Full Text PDF

Mobile Robot Positioning with Wireless Fidelity Fingerprinting and Explainable Artificial Intelligence.

Sensors (Basel)

December 2024

Computer Engineering Department, Engineering Faculty, Adnan Menderes University, 09100 Aydın, Türkiye.

Wireless Fidelity (Wi-Fi) based positioning has gained popularity for accurate indoor robot positioning in indoor navigation. In daily life, it is a low-cost solution because Wi-Fi infrastructure is already installed in many indoor areas. In addition, unlike the Global Navigation Satellite System (GNSS), Wi-Fi is more suitable for use indoors because signal blocking, attenuation, and reflection restrictions create a unique pattern in places with many Wi-Fi transmitters, and more precise positioning can be performed than GNSS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!