Identification and localization of BK-beta subunits in the distal nephron of the mouse kidney.

Am J Physiol Renal Physiol

Dept. of Cellular and Integrative Physiology, University of Nebraska Medical Center, 985850 Nebraska Medical Center, Omaha, NE 68198-5850, USA.

Published: July 2007

Large-conductance, Ca(2+)-activated K(+) channels (BK), comprised of pore-forming alpha- and accessory beta-subunits, secrete K(+) in the distal nephron under high-flow and high-K(+) diet conditions. BK channels are detected by electrophysiology in many nephron segments; however, the accessory beta-subunit associated with these channels has not been determined. We performed RT-PCR, Western blotting, and immunohistochemical staining to determine whether BK-beta1 is localized to the connecting tubule's principal-like cells (CNT) or intercalated cells (ICs), and whether BK-beta2-4 are present in other distal nephron segments. RT-PCR and Western blots revealed that the mouse kidney expresses BK-beta1, BK-beta2, and BK-beta4. Available antibodies in conjunction with BK-beta1(-/-) and BK-beta4(-/-) mice allowed the specific localization of BK-beta1 and BK-beta4 in distal nephron segments. Immunohistochemical staining showed that BK-beta1 is localized in the CNT but not ICs of the connecting tubule. The localization of BK-beta4 was discerned using an anti-BK-beta4 antibody on wild-type tissue and anti-GFP on GFP-replaced BK-beta4 mouse (BK-beta4(-/-)) tissue. Both antibodies (anti-BK-beta4 and anti-GFP) localized BK-beta4 to the thick ascending limb (TAL), distal convoluted tubule (DCT), and ICs of the distal nephron. It is concluded that BK-beta1 is narrowly confined to the apical membrane of CNTs in the mouse, whereas BK-beta4 is expressed in the TAL, DCT, and ICs.

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajprenal.00018.2007DOI Listing

Publication Analysis

Top Keywords

distal nephron
20
nephron segments
12
mouse kidney
8
rt-pcr western
8
immunohistochemical staining
8
bk-beta1 localized
8
dct ics
8
distal
6
nephron
6
bk-beta4
6

Similar Publications

Renal tubular acidosis (RTA) is a group of disorders in which there is an alteration in acid-base homeostasis because of the impairment of nephrons to excrete hydrogen ions or reabsorb bicarbonate ions, resulting in chronic metabolic acidosis. RTA is an important cause of rickets, particularly 'resistant rickets'. Dental manifestations frequently reported in patients with RTA include enamel hypoplasia and amelogenesis imperfecta, affecting permanent dentition.

View Article and Find Full Text PDF

Various tubular diseases in patients with multiple myeloma (MM) are caused by monoclonal immunoglobulin light chains (LCs). However, the physicochemical characteristics of the disease-causing LCs contributing to the onset of MM-associated tubular diseases remain unclear. We herein report a rare case of MM-associated combined tubulopathies: non-crystalline light chain proximal tubulopathy (LCPT) and crystalline light chain cast nephropathy (LCCN).

View Article and Find Full Text PDF

Indoxyl Sulfate and Its Potential Role in Mineralocorticoid Receptor Transactivation in Chronic Kidney Disease.

Cureus

December 2024

Department of Endocrinology, Metabolism, Rheumatology and Nephrology, Faculty of Medicine, Oita University, Yufu, JPN.

Background: The uremic toxin indoxyl sulfate (IS) is an important factor in chronic kidney disease (CKD) progression. Inhibitors of the renin-angiotensin system and add-on therapy with mineralocorticoid receptor (MR) antagonists can help reduce proteinuria and suppress CKD progression. However, the association between IS and MR activation remains unknown.

View Article and Find Full Text PDF
Article Synopsis
  • Kir5.1, when paired with Kir4.2, forms a crucial potassium channel (heterotetramer) in the basolateral membrane of mouse proximal tubules, affecting K+ conductance.
  • Immunofluorescence and immunoblotting show Kir4.2 is found exclusively in proximal tubules, while Kir5.1 is present in both proximal and distal nephrons; however, the absence of Kir5.1 reduces Kir4.2 levels and affects membrane staining.
  • Patch-clamp recordings reveal that Kir5.1-knockout mice lack the 50-pS K channel that is present in wild-type mice, leading to a less negative membrane potential in the proximal tubules, indicating the importance
View Article and Find Full Text PDF

Familial Hyperkalemic Hypertension.

Compr Physiol

December 2024

Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, Oregon, USA.

The rare disease Familial Hyperkalemic Hypertension (FHHt) is caused by mutations in the genes encoding Cullin 3 (CUL3), Kelch-Like 3 (KLHL3), and two members of the With-No-Lysine [K] (WNK) kinase family, WNK1 and WNK4. In the kidney, these mutations ultimately cause hyperactivation of NCC along the renal distal convoluted tubule. Hypertension results from increased NaCl retention, and hyperkalemia by impaired K secretion by downstream nephron segments.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!