A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Neuronal nitric oxide synthase (NOS-I) knockout increases the survival rate of neural cells in the hippocampus independently of BDNF. | LitMetric

Neuronal nitric oxide synthase (NOS-I) knockout increases the survival rate of neural cells in the hippocampus independently of BDNF.

Mol Cell Neurosci

Molecular and Clinical Psychobiology, Department of Psychiatry and Psychotherapy Josef-Schneider-Str. 11, Julius-Maximilians-University Würzburg, Füchsleinstr. 15, D-97080 Würzburg, Germany.

Published: June 2007

Investigations regarding the regulation of adult neurogenesis, i.e., the generation of new neurons from progenitor cells, have revealed a high degree of complexity. Although the pleiotropic messenger molecule nitric oxide (NO) has been suggested to modulate adult neurogenesis, the evidence is inconclusive due to the presence of different NO synthase isoforms in the brain. We therefore investigated whether stem cell proliferation or survival is altered in mice lacking neuronal nitric oxide synthase (NOS-I) or both endothelial and neuronal NOS (NOS-I/-III double knockout). While proliferation of neural stem cells was only numerically, but not significantly increased in NOS-I knockdown animals, the survival of newly formed neurons was substantially higher in NOS-I-deficient mice. In contrast, NOS-I/-III double knockout had significantly decreased survival rates. QRT-PCR in NOS-I-deficient mice revealed neither NOS-III upregulation compensating for the loss of NOS-I, nor alterations in VEGF levels as found in NOS-III-deficient animals. As changes in BDNF expression or protein levels were observed in the cortex, cerebellum and striatum, but not the hippocampus, the increase in stem cell survival appears not to be due to a BDNF mediated mechanism. Finally, NOS-I containing neurons in the dentate gyrus are rare and not localized close to progenitor cells, rendering direct NO effects on these cells unlikely. In conclusion, we suggest that NO predominantly inhibits the survival of new-born cells, by an indirect mechanism not involving BDNF or VEGF. Together, these results emphasize the important role of the different NOS isoforms with respect to adult neurogenesis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.mcn.2007.02.021DOI Listing

Publication Analysis

Top Keywords

nitric oxide
12
adult neurogenesis
12
neuronal nitric
8
oxide synthase
8
synthase nos-i
8
progenitor cells
8
stem cell
8
nos-i/-iii double
8
double knockout
8
nos-i-deficient mice
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!