Copper-64, a positron emitter suitable for positron emission tomography (PET), demonstrates improved in vivo clearance when chelated by the cross-bridged tetraazamacrocycle CB-TE2A compared to TETA. Good in vivo clearance was also observed for 64Cu-CB-TE2A conjugated to a peptide, which converts one coordinating carboxylate pendant arm to an amide. To better understand the in vivo stability of peptide- conjugated CB-TE2A, cross-bridged monoamides were synthesized. Crystal structures of natCu(II)-CB-TEAMA and natCu(II)-CB-PhTEAMA revealed hexadentate, distorted octahedral coordination geometry. In vivo biodistribution showed clearance of all 64Cu-radiolabeled cross-bridged monoamides from liver and bone marrow such that uptake at 24 h was <10% of uptake at 30 min. In contrast, >60% of 30 min uptake from 64Cu-TETA was retained in these tissues at 24 h. Clearance of 64Cu-cross-bridged monoamides from nontarget organs suggests good in vivo stability, thus supporting the use of CB-TE2A as a bifunctional chelator without modifications to the macrocycle backbone.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jm070204rDOI Listing

Publication Analysis

Top Keywords

vivo clearance
8
good vivo
8
vivo stability
8
cross-bridged monoamides
8
vivo
6
synthesis characterization
4
characterization vivo
4
vivo studies
4
studies cuii-64-labeled
4
cross-bridged
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!