Many lizards have epidermal glands in the cloacal or femoral region with semiochemical function related to sexual behavior and/or territorial demarcation. Externally, these glands are recognized as a row of pores, opening individually in the center of a modified scale. In many species the pores are used as systematic characters. They form a glandular cord or, in some species, a row of glandular beads below the dermis, and are connected to the exterior through the ducts, which continuously liberate a solid secretion. Dead cells, desquamated from the secretory epithelium, constitute the secretion, known as "a secretion plug." The present work focuses on the morphology of the femoral glands of the teiid lizard Ameiva ameiva, correlating it to the way in which the secretion is deposited in the environment. The results here obtained are compared to those available for other lizards and amphisbaenians. We observed that the diameter of the glandular pores did not show significant differences between males and females. The glands comprise germinative and secretory cells, which pass through at least three stages of differentiation, during which an accumulation of cytoplasmic granules, with a glycoprotein content, occurs. The cells eventually die and desquamate from the secretory epithelium, forming a secretory plug mostly constituted by juxtaposed nonfragmented secretory cells. Because of the arrangement of the rosette-like scales surrounding the femoral pores, we suggest that when the animal is in a resting position, with its femoral regions touching the ground, these scales may be involved in the breakage of their respective plugs, depositing tiny portions on the substrate. In this manner, it seems that the method for signal dispersion in this species involves specifically adapted structures and does not simply involve the chance breakage of the plug, as the gland secretes it. Signal dispersion must also be intimately associated with the animal's movement within its territory.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jmor.10473 | DOI Listing |
Nucleic Acids Res
January 2025
Tulane Center for Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, 1440 Canal Street, Downtown, New Orleans, LA 70112, USA.
Bone is a multifaceted tissue requiring orchestrated interplays of diverse cells within specialized microenvironments. Although significant progress has been made in understanding cellular and molecular mechanisms of component cells of bone, revealing their spatial organization and interactions in native bone tissue microenvironment is crucial for advancing precision medicine, as they govern fundamental signaling pathways and functional dependencies among various bone cells. In this study, we present the first integrative high-resolution map of human bone and bone marrow, using spatial and single-cell transcriptomics profiling from femoral tissue.
View Article and Find Full Text PDFACS Pharmacol Transl Sci
January 2025
Department of Pharmacology and Toxicology, University of Kansas, Lawrence, Kansas 66045, United States.
Mutations in connexin 32 (Cx32) are a common cause of Charcot-Marie-Tooth 1X (CMT1X) disease, an inherited peripheral neuropathy characterized by progressive neuromuscular weakness and demyelination. There are no approved pharmacologic therapies for CMT1X, and identifying new treatments that slow the onset and severity of neuromuscular decline may aid disease management. Cemdomespib is an orally bioavailable small molecule that improved demyelination and neuromuscular junction (NMJ) morphology in mice lacking Cx32 expression.
View Article and Find Full Text PDFKnee Surg Sports Traumatol Arthrosc
January 2025
Center for Orthopaedics, Trauma Surgery and Rehabilitation Medicine, University Medicine Greifswald, Greifswald, Germany.
Purpose: The dynamic alignment of the lumbar spine, pelvis and femur is increasingly studied in hip preservation surgery. However, the interaction between lumbopelvic alignment, acetabular and femoral morphology and its influence on patients' preoperative symptom burden remains poorly understood. The aim of this study was to evaluate whether lumbopelvic malalignment affects osseous hip morphology and exacerbates preoperative patient-reported joint functionality in patients undergoing periacetabular osteotomy (PAO).
View Article and Find Full Text PDFJ Orthop Surg Res
January 2025
The Third Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510378, P. R. China.
Background: The location and size of necrotic lesions are important factors for collapse, The preserved angles (PAs) are divided into anterior preserved angle (APA) and lateral preserved angle (LPA), which could accurately measure the location of necrosis lesion. We used them to evaluate the effect of the location and size of necrotic lesions on collapse by finite element analysis, to offer a framework for evaluating the prognosis of osteonecrosis of the femoral head (ONFH) in clinical settings.
Methods: 3 left hip models were constructed based on CT data.
Purpose: To create tridimensional (3D) anatomical models of diaphyseal fractures in dogs (3D AMDFD) and to evaluate the models from their radiographs.
Methods: The study consisted of six stages: preparation of femur from a healthy dog cadaver; digitalization of the bone through a 3D scanner and creation of the base model; creation of a 3D AMDFD based on the image of the base model, 3D modeling carried out to reproduce five different types of diaphyseal fractures; printing the models produced on a 3D printer with a thermoplastic material; insertion of neodymium magnets in the fracture line to allow the assembly and disassembly of the parts; and radiography of 3D AMDFD in lateromedial and craniocaudal positions.
Results: The base model and 3D AMDFD had high precision in the replication of bone structures, like the bone in natura.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!