The epidermal growth factor receptor (EGFR) is overexpressed on a high percentage of human carcinomas. EGFR is an attractive therapeutic target for tissue-specific targeting by non-viral vectors in cancer gene therapy. In this study we analyzed and compared the effects of EGFR-targeted and untargeted polyplexes in respect to internalization into EGFR overexpressing HuH7 cells. Uptake kinetics and internalization dynamics were evaluated by flow cytometry and single-particle tracking. Our results clearly show that EGFR targeting leads to faster and more efficient internalization compared with untargeted particles. After 5 minutes 50% of the EGFR-targeted polyplexes were internalized, whereas untargeted polyplexes reached only approximately 20% internalization even after 20 minutes. In addition, single-particle tracking revealed a three-phase dynamics of the internalization process, and this was generally observed for polyplexes independent of targeting. Phase I was characterized by slow, actin cytoskeleton-mediated movement of the particles with drift, and included the internalization process. During phase II particles displayed increased velocities with normal and confined diffusion in the cytoplasm. Phase III was characterized by fast active transport along microtubules. Targeting of polyplexes for receptor-mediated endocytosis by the EGFR resulted in shortening of phase I and strongly accelerated internalization.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/sj.mt.6300176 | DOI Listing |
Biomolecules
November 2021
Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research Sponsored by the National Cancer Institute, Frederick, MD 21701, USA.
Survival from pancreatic cancer remains extremely poor, in part because this malignancy is not diagnosed in the early stages, and precancerous pancreatic intraepithelial neoplasia (PanIN) lesions are not seen on routine radiographic imaging. Since the cholecystokinin-B receptor (CCK-BR) becomes over-expressed in PanIN lesions, it may serve as a target for early detection. We developed a biodegradable fluorescent polyplex nanoparticle (NP) that selectively targets the CCK-BR.
View Article and Find Full Text PDFBiomacromolecules
October 2021
Department of Organic and (Bio)Polymer Chemistry, Hasselt University, Building F, Agoralaan 1, B-3590 Diepenbeek, Belgium.
Polyplex-mediated gene transfection is now in its' fourth decade of serious research, but the promise of polyplex-mediated gene therapy has yet to fully materialize. Only approximately one in a million applied plasmids actually expresses. A large part of this is due to an incomplete understanding of the mechanism of polyplex transfection.
View Article and Find Full Text PDFInt J Pharm
October 2019
Université de Tours, EA6295 «Nanomédicaments et Nanosondes», Tours 37200, France. Electronic address:
The association between superparamagnetic iron oxide nanoparticles (SPION), carrying small interfering RNA (siRNA) as therapeutic agents and humanized anti- human epidermal growth factor receptor-2 (HER2) single-chain antibody fragments (scFv) for the active delivery into HER2-overexpressing cells appears as an interesting approach for patients with HER2-overexpressing advanced breast cancer. The obtained Targeted Stealth Magnetic siRNA Nanovectors (TS-MSN) are formulated by combining: (i) the synthesis protocol of Targeted Stealth Fluorescent Particles (T-SFP) which form the core of TS-MSN and (ii) the formulation protocol allowing the loading of T-SFP with polyplexes (siRNA and cationic polymers). TS-MSN have suitable physico-chemical characteristics for intravenous administration and protect siRNA against enzymatic degradation up to 24 h.
View Article and Find Full Text PDFCell Mol Gastroenterol Hepatol
March 2018
Department of Medicine, Georgetown University, Washington, District of Columbia.
Background & Aims: Pancreatic ductal adenocarcinoma (PDAC) remains the most aggressive malignancy with the lowest 5-year survival rate of all cancers in part owing to the lack of tumor-specific therapy and the rapid metastatic nature of this cancer. The gastrointestinal peptide gastrin is a trophic peptide that stimulates growth of PDAC in an autocrine fashion by interaction with the cholecystokinin receptor that is overexpressed in this malignancy.
Methods: We developed a therapeutic novel polyplex nanoparticle (NP) that selectively targets the cholecystokinin receptor on PDAC.
Oncotarget
November 2017
Department of Internal Medicine IV, University Hospital of Munich, LMU Munich, Munich, Germany.
Liver metastases present a serious problem in the therapy of advanced colorectal cancer (CRC), as more than 20% of patients have distant metastases at the time of diagnosis with less than 5% being cured. Consequently, new therapeutic approaches are of major need together with high-resolution imaging methods that allow highly specific detection of small metastases. The unique combination of reporter and therapy gene function of the sodium iodide symporter (NIS) may represent a promising theranostic strategy for CRC liver metastases allowing non-invasive imaging of functional NIS expression and therapeutic application of I.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!