Abnormal expression and signaling of ErbB receptors has been implicated in multiple epithelial malignancies, including pancreatic cancer. Erlotinib, an epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI), has been recently approved for pancreatic cancer treatment, but there are no reliable predictors of patient response. Expression of additional ErbB receptors seems to influence tumor response to EGFR-targeted therapy. We analyzed the influence of ErbB3 expression on pancreatic cancer cell response to erlotinib treatment. Proliferation assays of five human pancreatic cancer cell lines were performed following treatment with erlotinib. Expression and phosphorylation profiles of ErbB receptors and downstream adaptor protein (Akt, ERK1/2, STAT3, mTOR) were evaluated following stimulation with EGF or neuregulin-beta. The formation of EGFR homodimers and EGFR-ErbB3 heterodimers, necessary to enable ErbB3 downstream signaling, was demonstrated by chemical cross-linking assays. The effects of RNA inhibition of ErbB3 on sensitivity to erlotinib treatment were evaluated in AsPC-1 pancreatic cancer cells. Erlotinib inhibited Akt phosphorylation and proliferation of all the ErbB3-expressing cell lines but did not affect mTOR activation. Cross-linking studies confirmed the presence of EGFR-ErbB3 heterodimers in pancreatic cancer cells. Only the ErbB3-deficient MIA PaCa-2 cells displayed persistent Akt activation and ongoing proliferation in spite of erlotinib treatment. siRNA-mediated inhibition of ErbB3 expression in AsPC-1 cells resulted in acquired resistance to erlotinib treatment. Pancreatic cancer cells which lack ErbB3 do not display activation of the ErbB3-PI3K-Akt cascade induced by EGFR/ErbB3 heterodimers and become less critically dependent on EGFR signaling and therefore resistant to erlotinib. Pancreatic cancer expression of ErbB3 may be useful for EGFR-targeted therapy patient selection.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.4161/cbt.6.4.3849 | DOI Listing |
Phys Imaging Radiat Oncol
January 2025
Department of Radiation Oncology, Hokkaido University Faculty of Medicine and Graduate School of Medicine, North 15 West 7, Kita-ku, Sapporo, Hokkaido 060-8638, Japan.
Background And Purpose: Radiation-induced lymphopenia (RIL) may be associated with a worse prognosis in pancreatic cancer. This study aimed to develop a normal tissue complication probability (NTCP) model to predict severe RIL in patients with pancreatic cancer undergoing concurrent chemoradiotherapy (CCRT).
Materials And Methods: We reviewed pancreatic cancer patients treated at our facility for model training and internal validation.
Ann Transl Med
December 2024
Institute for Tumor Immunology, Center for Tumor Biology and Immunology, Philipps-University Marburg, Marburg, Germany.
One of the most important targets for natural killer (NK) cell-mediated therapy is the induction of natural killer group 2D ligand (NKG2D-L) expression. APTO253 is a small molecule that selectively kills acute myeloid leukemia (AML) cells, and it has been reported that APTO253 can induce Krüppel-like factor 4 (KLF4) expression and downregulate c-MYC expression. Recently, we discovered a novel role of APTO253 in modulating the NK cell response by inducing surface expression of NKG2D-Ls, especially MHC class I polypeptide-related sequence A (MICA), in AML cells.
View Article and Find Full Text PDFAnn Transl Med
December 2024
Department of Clinical Oncology, The Christie NHS Foundation Trust, Manchester, UK.
World J Gastrointest Oncol
January 2025
Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest 050474, Romania.
Background: Pancreatic ductal adenocarcinoma (PDAC) is an aggressive lethal malignancy with limited options for treatment and a 5-year survival rate of 11% in the United States. As for other types of tumors, such as colorectal cancer, aberrant lipid synthesis and reprogrammed lipid metabolism have been suggested to be associated with PDAC development and progression.
Aim: To identify the possible involvement of lipid metabolism in PDAC by analyzing in tumoral and non-tumoral tissues the expression level of the most relevant genes involved in the long-chain fatty acid (FA) import into cell.
World J Gastrointest Oncol
January 2025
Department of Automatic Control Engineering, Feng Chia University, Taichung 407, Taiwan.
In this editorial, we will discuss the article by Tang published in the recent issue of the . They explored an innovative approach to enhancing gemcitabine (GEM) delivery and efficacy using human bone marrow mesenchymal stem cells (HU-BMSCs)-derived exosomes. The manufacture of GEM-loaded HU-BMSCs-derived exosomes (Exo-GEM) has been optimized.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!