Cells from Ewing sarcoma exhibit cellular features and express markers, suggesting that the tumor is of neuroectodermal origin. Because Notch signaling regulates the differentiation of neuroectodermal cells during development, we examined the role of Notch signaling in Ewing sarcomas. We found that Ewing sarcomas express Notch receptors, ligands, and the Notch target gene HES1. To determine the functional implications of Notch signaling, we expressed tetracycline-regulated constitutively active, dominant-negative (DN), or wild-type Notch-1 receptors in two Ewing sarcoma cell lines, or we treated the cell lines with a gamma-secretase inhibitor. Expression of the constitutively active Notch-1 reduced proliferation and expression of the DN Notch-1 reduced apoptosis in vitro. However, there was only a small difference in the volume of tumors that formed when the cell lines expressing these constructs were implanted in nude mice. Xenograft tumors derived from the cell lines expressing DN Notch-1 exhibited a neural phenotype. Treatment with a gamma-secretase inhibitor caused similar changes as expression of the DN construct. Notch signaling plays a role in cell differentiation, proliferation, and apoptosis in Ewing sarcoma, but its inhibition is only associated with a small change in tumor growth potential.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1854963PMC
http://dx.doi.org/10.2353/ajpath.2007.060971DOI Listing

Publication Analysis

Top Keywords

notch signaling
20
ewing sarcoma
16
cell lines
16
ewing sarcomas
8
constitutively active
8
gamma-secretase inhibitor
8
notch-1 reduced
8
lines expressing
8
ewing
6
notch
6

Similar Publications

Regulatory Mechanisms of Signaling Pathways in Liver Cancer Treatment with Traditional Chinese Medicine.

J Ethnopharmacol

January 2025

Department of Spleen and Gastroenterology, Dongzhimen Hospital, Beijing University of Chinese Medicine,100007; Liver Diseases Academy of Traditional Chinese Medicine, Beijing University of Chinese Medicine,100029.

Ethnopharmacological Relevance: Traditional Chinese Medicine (TCM), as a longstanding therapeutic approach, offers unique advantages and potential in the treatment of liver cancer. Recent studies have highlighted its role in preventing liver cancer progression by modulating key signaling pathways. TCM's multi-component, multi-target, and multi-pathway mechanisms of action have garnered significant attention in the medical community for their ability to address complex diseases like liver cancer.

View Article and Find Full Text PDF

Maintenance of neural progenitors requires Notch signaling in vertebrate development. Previous study has shown that Jagged2-mediated Notch signaling maintains proliferating neural progenitors in the ventral spinal cord. However, components for Jagged-mediated signaling remain poorly defined during late neurogenesis.

View Article and Find Full Text PDF

Cancer Stem Cells (CSCs) play an important role in the development, resistance, and recurrence of many malignancies. These subpopulations of tumor cells have the potential to self-renew, differentiate, and resist conventional therapy, highlighting their importance in cancer etiology. This review explores the regulatory mechanisms of CSCs in breast, cervical, and lung cancers, highlighting their plasticity, self-renewal, and differentiation capabilities.

View Article and Find Full Text PDF

Colorectal cancer (CRC) remains a leading cause of cancer-related mortality globally, necessitating the development of innovative treatment strategies. Recent research has underscored the significant role of non-coding RNAs (ncRNAs) in CRC pathogenesis, offering new avenues for diagnosis and therapy. In this review, we delve into the intricate roles of various ncRNAs, including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), in CRC progression, epithelial-mesenchymal transition (EMT), metastasis, and drug resistance.

View Article and Find Full Text PDF

Type IV collagen expression is regulated by Notch3-mediated Notch signaling during angiogenesis.

Biochem Biophys Res Commun

January 2025

Graduate School of Engineering, Kogakuin University, Tokyo, Japan; Department of Chemistry and Life Science, School of Advanced Engineering, Kogakuin University, Tokyo, Japan. Electronic address:

Angiogenesis, the process of new blood vessel formation, involves endothelial cell proliferation and migration, accompanied by the remodeling of the extracellular matrix (ECM). Type IV collagen, a major ECM component, plays a critical role in vascular basement membrane regeneration, influencing cell polarity, migration, and survival. This study examines the regulatory role of Notch signaling, mediated by Notch3, in type IV collagen expression using TIG-1 fibroblasts and a co-culture angiogenesis model with human umbilical vein endothelial cells (HUVECs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!