Background: Accurate monitoring of the peripheral arterial oxygen saturation has become an important tool in the prehospital emergency medicine. This monitoring requires an adequate plethysmographic pulsation. Signal quality is diminished by cold ambient temperature due to vasoconstriction. Blockade of the stellate ganglion can improve peripheral vascular perfusion and can be achieved by direct injection or transcutaneous electrical nerve stimulation (TENS) stimulation. We evaluated whether TENS on the stellate ganglion would reduce vasoconstriction and thereby improve signal detection quality of peripheral pulse oximetry.

Methods: In our study, 53 patients with minor trauma who required transport to the hospital were enrolled. We recorded vital signs, including core and skin temperature before and after transport to the hospital. Pulse oximetry sensors were attached to the patient's second finger on both hands. TENS of the stellate ganglion was started on one side after the beginning of the transport. Pulse oximeter alerts, due to poor signal detection, were recorded for each side separately.

Results: On the hand treated with TENS we detected a significant reduction of alerts compared to the other side (mean alerts TENS 3.1 [1-15] versus control side 8.8 [1-28] P < 0.05). The duration of dropouts was shorter as well (mean duration TENS 77 [16-239] s versus control side 333 [78-1002] s).

Conclusion: The data indicate that blockade of the stellate ganglion with TENS improves signal quality of pulse oximeters in the prehospital setting.

Download full-text PDF

Source
http://dx.doi.org/10.1213/01.ane.0000260564.52592.63DOI Listing

Publication Analysis

Top Keywords

stellate ganglion
20
signal quality
12
transcutaneous electrical
8
electrical nerve
8
nerve stimulation
8
quality pulse
8
pulse oximetry
8
blockade stellate
8
tens stellate
8
signal detection
8

Similar Publications

Background: The best tool for the management of pain associated with distal symmetric peripheral neuropathy (DSPN) is a matter of debate. Therefore, the study aimed to explore whether ultrasound-guided pulsed radiofrequency (PRF) therapy of the stellate ganglion (SG) in type 2 diabetes mellitus (T2DM) patients with painful DSPN could decrease pain severity and the need for analgesics.

Methods: Fifty-six T2DM patients with refractory painful DSPN were enrolled in this study, who then received bilateral ultrasound-guided PRF therapy of SG.

View Article and Find Full Text PDF

Ultrasound-Guided Stellate Ganglion Block Combined with Pharmacological Treatment for Rosacea: A Report of Two Cases.

Patient Prefer Adherence

December 2024

Department of Anesthesiology, the Third Clinical Medical College of China Three Gorges University, Gezhouba Central Hospital of Sinopharm, Yichang, Hubei, 443002, People's Republic of China.

Rosacea is a chronic inflammatory disease primarily affecting the central facial region, significantly involving the facial blood vessels and the sebaceous gland units associated with hair follicles. The stellate ganglion block (SGB) technique can restore balance to autonomic nervous function by interrupting the impulse conduction of preganglionic and postganglionic sympathetic nerve fibers, thereby alleviating excessive peripheral blood vessel contraction, enhancing tissue blood supply, balancing hormone secretion, and modulating immune responses. SGB has demonstrated remarkable efficacy in treating various skin conditions affecting the head, face, and neck.

View Article and Find Full Text PDF

Complex regional pain syndrome (CRPS) is a chronic debilitating multisystem neuropathic pain disorder. It is characterized by continuous pain, usually out of proportion to any known tissue injury, vasomotor changes, sudomotor or edema, and motor or trophic changes. The objective of this study is to assess the efficacy of neuromodulation, interventional, and unconventional treatments for CRPS.

View Article and Find Full Text PDF

The occurrence of myocardial infarction (MI)-induced malignant ventricular arrhythmias (VAs) is closely associated with the hyperactivation of left stellate ganglion (LSG). Proinflammatory M1 macrophage is reported to aggravate sympathetic overactivation and cause VAs. Therefore, the depletion of M1 macrophage is anticipated to inhibit LSG overactivation and alleviate MI-induced VAs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!