Comparisons of polyvinyl chloride electrical tape typically rely upon evaluating class characteristics such as physical dimensions, surface texture, and chemical composition. Given the various techniques that are available for this purpose, a comprehensive study has been undertaken to establish an optimal analytical scheme for electrical tape comparisons. Of equal importance is the development of a quantitative means for sample discrimination. In this study, 67 rolls of black electrical tape representing 34 different nominal brands were analyzed via scanning electron microscopy and energy dispersive spectroscopy. Differences in surface roughness, calendering marks, and filler particle size were readily apparent, including between some rolls of the same nominal brand. The relative amounts of magnesium, aluminum, silicon, sulfur, lead, chlorine, antimony, calcium, titanium, and zinc varied greatly between brands and, in some cases, could be linked to the year of manufacture. For the first time, quantitative differentiation of electrical tapes was achieved through multivariate statistical techniques, with 36 classes identified within the sample population. A single-blind study was also completed where questioned tape samples were correctly associated with known exemplars. Finally, two case studies are presented where tape recovered from an improvised explosive device is compared with tape recovered from a suspect.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1556-4029.2007.00406.x | DOI Listing |
Materials (Basel)
January 2025
School of Electrical Engineering, Beijing Jiaotong University, Beijing 100044, China.
Embedding stacked HTS tapes into twisted slots is one design approach for constructing fusion conductors. This paper adopts a Cable-in-Conduit Conductor (CICC) structure, utilizing commercially REBCO coated conductors. The cable framework is made of copper and features six helically twisted slots filled with 2G HTS tapes.
View Article and Find Full Text PDFBMC Health Serv Res
January 2025
Department of Health Policy and Management, Faculty of Public Health, Jimma University, Jimma, Ethiopia.
Background: The institutionalization of village health services with salaried community health workers has been established in Ethiopia for over a decade. However, there are serious concerns about the capacity of health posts to provide quality curative care for children under-five.Understanding the readiness of health posts is crucial for improving the care given to sick children.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea.
The commercialization of metasurfaces is crucial for real-world applications such as wearable sensors, pigment-free color pixels, and augmented and virtual reality devices. Nanoparticle-embedded resin-based nanoimprint lithography (PER-NIL) has shown itself to be a low-cost, high-throughput manufacturing method enabling the replication of high-index nanostructures. It has been extensively integrated into the fabrication of hologram metasurfaces, metalenses, and sensors due to its procedural simplicity.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
School of Natural and Built Environment, Queen's University Belfast, Belfast, Northern Ireland, BT7 1NN, UK.
This research presents a straightforward and economically efficient design for a microbial fuel cell (MFC) that can be conveniently integrated into a borehole to monitor natural attenuation in groundwater. The design employs conventional, transparent, and reusable PVC bailers with graphite tape and granular activated carbon to create high surface area electrodes. These electrodes are connected across redox environments in nested boreholes through a wire and variable resistor setup.
View Article and Find Full Text PDFNature
December 2024
Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, China.
Diamond is an exceptional material with great potential across various fields owing to its interesting properties. However, despite extensive efforts over the past decades, producing large quantities of desired ultrathin diamond membranes for widespread use remains challenging. Here we demonstrate that edge-exposed exfoliation using sticky tape is a simple, scalable and reliable method for producing ultrathin and transferable polycrystalline diamond membranes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!