AI Article Synopsis

Article Abstract

Characteristics of particles included in dry powder inhalers is extended from our previous report (in this journal) to include properties related to their dynamic performance. The performance of dry powder aerosols for pulmonary delivery is known to depend on fluidization and dispersion which reflects particle interactions in static powder beds. Since the solid state, surface/interfacial chemistry and static bulk properties were assessed previously, it remains to describe dynamic performance with a view to interpreting the integrated database. These studies result in complex data matrices from which correlations between specific properties and performance may be deduced. Lactose particles were characterized in terms of their dynamic flow, powder and aerosol electrostatics, and aerodynamic performance with respect to albuterol aerosol dispersion. There were clear correlations between flow properties and aerosol dispersion that would allow selection of lactose particles for formulation. Moreover, these properties can be related to data reported earlier on the morphological and surface properties of the carrier lactose particles. The proposed series of analytical approaches to the evaluation of powders for inclusion in aerosol products has merit and may be the basis for screening and ultimately predicting particle performance with a view to formulation optimization.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jps.20943DOI Listing

Publication Analysis

Top Keywords

dry powder
12
lactose particles
12
particles included
8
included dry
8
powder inhalers
8
dynamic performance
8
performance view
8
aerosol dispersion
8
properties
6
performance
6

Similar Publications

In addition to the known therapeutic indications for cannabidiol, its administration by inhalation appears to be of great interest. Indeed, there is evidence of cannabidiol's efficacy in several physiological pathways, suggesting its potential for a wide range of applications for both local and systemic pulmonary administration like cancers. Significant advances in pulmonary drug delivery have led to innovative strategies to address the challenges of increasing the respirable fraction of drugs and standardizing inhalable products.

View Article and Find Full Text PDF

Preclinical model of Mycobacteroides abscessus lung disease by nose-only exposure of mice to bacterial powder aerosol.

Tuberculosis (Edinb)

January 2025

CSIR-Central Drug Research Institute, Lucknow, 226031, UP, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, UP, India. Electronic address:

The limitations of existing mouse models of lung infection with Mycobacteroides abscessus impede drug discovery and development. In contrast to current animal models that introduce NTM intravenously or by intranasal/intra-tracheal instillation or via bronchoscopy-guided insufflation, we developed a dry powder inhalation (DPI) of M. abscessus ATCC 19977 that generated paucibacillary lung infection and histopathology in immunocompetent mice.

View Article and Find Full Text PDF

Aim: It was the aim of this study to compare two different dry reverse micelle (RM) preparation methods for the incorporation of hydrophilic drugs into oral self-emulsifying drug delivery systems (SEDDS).

Methods: Cationic ethacridine lactate, anionic fluorescein sodium salt and the antibiotic peptide bacitracin were solubilized in RM containing sodium docusate, soy phosphatidylcholine and sorbitan monooleate in highly lipophilic oils such as squalane. In the dry addition (DA) method, drugs were directly added to empty RM in their powder form.

View Article and Find Full Text PDF

The administration of surfactant aerosol therapy to preterm infants receiving continuous positive airway pressure (CPAP) respiratory support is highly challenging due to small flow passages, relatively high ventilation flow rates, rapid breathing and small inhalation volumes. To overcome these challenges, the objective of this study was to implement a validated computational fluid dynamics (CFD) model and develop an overlay nasal prong interface design for use with CPAP respiratory support that enables high efficiency powder aerosol delivery to the lungs of preterm infants when needed (i.e.

View Article and Find Full Text PDF

The high-temperature proton exchange membranes suffer from weak binding strength for phosphoric acid molecules, which seriously reduce the fuel cell efficiency, especially operation stability. Introduction of microporous material in the membrane can effectively reduce the leaching of phosphoric acid. However, due to the poor compatibility between the polymer and fillers, the membrane's performance significantly reduced at high fillers content.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!