Mechanical stress is a decisive factor for the differentiation, proliferation, and general behavior of cells. However, the specific signaling of mechanotransduction is not fully understood. One basic problem is the clear distinction between the different extracellular matrix (ECM) constituents that participate in cellular adhesion and their corresponding signaling pathways. Here, a system is proposed that enables mechanical stimulation of human-skin-derived keratinocytes and human dermal fibroblasts that specifically interact with peptide sequences immobilized on a non-interacting but deformable substrate. The peptide sequences mimic fibronectin, laminin, and collagen type IV, three major components of the ECM. To achieve this, PDMS is activated using ammonia plasma and coated with star-shaped isocyanate-terminated poly(ethylene glycol)-based prepolymers, which results in a functional coating that prevents unspecific cell adhesion. Specific cell adhesion is achieved by functionalization of the layers with the peptide sequences in different combinations. Moreover, a method that enables the decoration of deformable substrates with cell-adhesion peptides in extremely defined nanostructures is presented. The distance and clustering of cell adhesion molecules below 100 nm has been demonstrated to be of utmost importance for cell adhesion. Thus we present a new toolbox that allows for the detailed analysis of the adhesion of human-skin-derived cells on structurally and biochemically decorated deformable substrates.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smll.200600596 | DOI Listing |
Cancer Immunol Immunother
January 2025
Department of Oncology, Lianyungang Clinical College of Nanjing Medical University/The First People's Hospital of Lianyungang, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, 222002, China.
Background: Due to its strong immunogenicity and tumor specificity, neoplastic antigen has emerged as an immunotherapy target with wide therapeutic prospect and clinical application value. Anti-programmed death-1 (PD-1) antibodies reinvigorate T cell-mediated antitumor immunity. So, we conducted single-arm trial to assess the safety and efficacy of PD-1 blockade(Camrelizumab)-activated neoantigen specific cellular therapy (aNASCT) on advanced relapsed non-small lung cancer(NSCLC)(ClinicalTrials.
View Article and Find Full Text PDFChem Commun (Camb)
January 2025
State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China.
In recent years, researchers have drawn inspiration from natural ion channels to develop various artificial nanopores/nanochannels, including solid-state and biological. Through imitating the precise selectivity and single molecule sensing exhibited by natural ion channels, nanopores/nanochannels have been widely used in many fields, such as analyte detection, gene sequencing and so on. In these applications, the surface functionalization of nanopores/nanochannels directly determines the effectiveness in quantitative analysis and single molecule detection.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Tel Aviv university, Tel Aviv, Israel, Israel.
Background: Amyloid filaments formation is a complex kinetic and thermodynamic process. The dependence of peptide polymerization on peptide-peptide interactions to form a β-pleated sheet fibrils and the stimulatory influence of other proteins on the reaction suggest that amyloid formation may be subject to modulation METHOD: In vitro formation of β-amyloid was induced by incubation of an aqueous solution of AβP (10 mg/ml) for 7 days at 37°C. The extent of β-amyloid formation and disaggregation were monitored using a panel of well characterized mAbs raised against soluble AβP fragments.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Icahn School of Medicine at Mount Sinai, New York, NY, USA.
Background: Clinicopathological studies of Alzheimer's disease (AD) have demonstrated that synaptic or neuronal loss and clinical cognitive decline do not reliably correlate with fibrillar amyloid burden. We created a transgenic mouse model overexpressing Dutch (E693Q) mutant human amyloid precursor protein (APP) driven by the pan-neuronal Thy1 promoter. Accumulation of APP carboxyl-terminal fragments was observed in the brains of these mice, which develop an impaired learning phenotype directly proportional to brain oAβ levels.
View Article and Find Full Text PDFBackground: Alzheimer's disease (AD) is a progressive neurodegenerative disease and the most prevalent form of late-life dementia. The ε2 allele of the APOE gene encoding apolipoprotein E (APOE2) is associated with lower susceptibility to AD among the three genotypes (ε2, ε3, ε4), while APOE4 is the strongest genetic risk factor for late-onset AD. APOE plays a critical role in maintaining synaptic plasticity and neuronal function by controlling lipid homeostasis, with APOE2 having a superior function.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!