Human mesenchymal stromal (stem) cells (hMSCs) isolated from adult bone marrow (BM-hMSCs) as well as amnion (AM-hMSCs) and chorion (CM-hMSCs) term placenta leaves were studied by transmission electron microscopy (TEM) to investigate their ultrastructural basic phenotype. At flow cytometry, the isolated cells showed a homogeneous expression of markers commonly used to identify hMSCs, i.e., CD105, CD44, CD90, CD166, HLA-ABC positivities, and CD45, AC133, and HLA-DR negativities. However, TEM revealed subtle yet significant differences. BM-hMSCs had mesenchymal features with dilated cisternae of rough endoplasmic reticulum (rER) and peripheral collections of multiloculated clear blisters; this latter finding mostly representing complex foldings of the plasma membrane could be revelatory of the in situ cell arrangement in the niche microenvironment. Unlike BM-hMSCs, CM-hMSCs were more primitive and metabolically quiescent, their major features being the presence of rER stacks and large peripheral collections of unbound glycogen. AM-hMSCs showed a hybrid epithelial-mesenchymal ultrastructural phenotype; epithelial characters included non-intestinal-type surface microvilli, intracytoplasmic lumina lined with microvilli, and intercellular junctions; mesenchymal features included rER profiles, lipid droplets, and well-developed foci of contractile filaments with dense bodies. These features are consistent with the view that AM-hMSCs have a pluripotent potential. In conclusion, this study documents that ultrastructural differences exist among phenotypically similar hMSCs derived from human bone marrow and term placenta leaves; such differences could be revelatory of the hMSCs in vitro differentiation potential and may provide useful clues to attempt their in situ identification.

Download full-text PDF

Source
http://dx.doi.org/10.1080/01913120601169477DOI Listing

Publication Analysis

Top Keywords

bone marrow
12
term placenta
12
human mesenchymal
8
mesenchymal stromal
8
stromal stem
8
stem cells
8
marrow term
8
placenta leaves
8
mesenchymal features
8
peripheral collections
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!