Although there is evidence indicating that mononuclear phagocytes can take up mercury by some forms of endocytosis, very little is known about the potential for the uptake of mercuric species by carrier-mediated processes. Thus, we hypothesized that monocytes also possess mechanisms allowing these cells to take up inorganic mercury (Hg2+) and/or methylmercury (CH3Hg+) as cysteine (Cys) and/or homocysteine (Hcy) S-conjugates by certain membrane transport proteins. The specific thiol S-conjugates were chosen for study because our laboratory and those of some other investigators have demonstrated that these species of mercury are indeed transportable substrates for several membrane transport proteins in certain types of epithelial cells. We chose to use RAW 264.7 cells for our experiments. These cells represent an adherent line of mouse monocytes. Kinetic analyses for the uptake of Cys-Hg-Cys, CH3Hg-Cys, Hcy-Hg-Hcy, and CH3Hg-Hcy revealed that uptake occurred by a saturable, concentration-dependent mechanism, displaying Michaelis-Menten properties. Interestingly, in the cells exposed to the Cys or Hcy S-conjugate of Hg2+, significantly more Hg2+ was taken up in the presence of 140 mM sodium chloride (NaCl) than in the presence of 140 mM N-methyl-D-glucamine (NMDG), indicating that Na-dependent processes play more of a role in the uptake of these species of Hg2+ than sodium-independent ones. With respect to the uptake of CH3Hg+, rates of uptake of the Cys and Hcy S-conjugates of CH3Hg+ were similar under both Na-dependent and Na-independent conditions, although the levels of uptake of these mercuric species far exceeded the levels of uptake of the corresponding S-conjugate of Hg2+. Uptake of Hg2+ and CH3Hg+, as the Cys or Hcy S-conjugates, was also time-dependent. We also showed that when the temperature in the bathing medium was reduced to 4 degrees C, uptake of the Cys S-conjugates Hg2+ or CH3Hg+ was for the most part reduced to negligible levels in the RAW cells; indicating that the preponderance of uptake at 37 degrees C was not due primarily to simple diffusion and/or non-specific binding. Overall, the present findings strongly suggest that the uptake of the Cys and Hcy S-conjugates of Hg2+ and/or CH3Hg+ occurs in monocytes by one or more mechanisms involving carrier proteins.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/15287390701208644 | DOI Listing |
J Trace Elem Med Biol
December 2022
National Research Center, Therapeutic Chemistry Department, Al Bhoouth Street, Cairo, Egypt.
Background: Mercuric chloride (HgCl3) is categorized as class II B hazardous metal that is present in many occupational and environmental conditions. In the meantime, Hg exists in the environment in such an abundant manner, it is virtually impossible for humans to avoid exposure to different forms of Hg. In addition to environmental exposure, individuals may be exposed to Hg from dental amalgams, medicinal treatments and dietary sources.
View Article and Find Full Text PDFArch Biochem Biophys
January 2012
Division of Basic Medical Sciences, Mercer University School of Medicine, Macon, GA 31207, USA.
Anthropogenic practices and recycling in the environment through natural processes result in release of potentially harmful levels of mercury into the biosphere. Mercury, especially organic forms, accumulates in the food chain. Mercury reacts readily with sulfur-containing compounds and often exists as a thiol S-conjugate, such as the l-cysteine (Cys)-S-conjugate of methylmercury (CH(3)Hg-S-Cys) or inorganic mercury (Cys-S-Hg-S-Cys).
View Article and Find Full Text PDFToxicol Sci
September 2008
Mercer University School of Medicine, Division of Basic Medical Sciences, Macon, Georgia 31207, USA.
Cysteine (Cys) and homocysteine (Hcy)-S-conjugates of inorganic mercury (Hg2+) are transportable species of Hg2+ that are taken up readily by proximal tubular cells. The metal chelators, 2,3-dimercaptopropane-1-sulfonic acid (DMPS) and meso-2,3-dimercaptosuccinic acid (DMSA), have been used successfully to extract Hg2+ from these cells, presumably via the multidrug resistance protein (Mrp2). In the current study, we tested the hypothesis that Mrp2 is involved in the DMPS- and DMSA-mediated extraction of Hg2+ following administration of Hg2+ as an S-conjugate of Cys or Hcy.
View Article and Find Full Text PDFToxicol Appl Pharmacol
June 2007
Division of Basic Medical Sciences, Mercer University School of Medicine, Macon, GA 31207, USA.
Inorganic mercury (Hg(2+)) is a prevalent environmental contaminant to which exposure to can damage rod photoreceptor cells and compromise scotopic vision. The retinal pigment epithelium (RPE) likely plays a role in the ocular toxicity associated with Hg(2+) exposure in that it mediates transport of substances to the photoreceptor cells. In order for Hg(2+) to access photoreceptor cells, it must first be taken up by the RPE, possibly by mechanisms involving transporters of essential nutrients.
View Article and Find Full Text PDFJ Toxicol Environ Health A
May 2007
Division of Basic Medical Sciences, Mercer University School of Medicine, Macon, Georgia 31207, USA.
Although there is evidence indicating that mononuclear phagocytes can take up mercury by some forms of endocytosis, very little is known about the potential for the uptake of mercuric species by carrier-mediated processes. Thus, we hypothesized that monocytes also possess mechanisms allowing these cells to take up inorganic mercury (Hg2+) and/or methylmercury (CH3Hg+) as cysteine (Cys) and/or homocysteine (Hcy) S-conjugates by certain membrane transport proteins. The specific thiol S-conjugates were chosen for study because our laboratory and those of some other investigators have demonstrated that these species of mercury are indeed transportable substrates for several membrane transport proteins in certain types of epithelial cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!