Serotonin, an important neurotransmitter, is colocalized with neuronal nitric oxide synthase (nNOS), a homodimeric enzyme which catalyzes the production of nitric oxide (NO(.-)) and/or oxygen species. As many interactions have been reported between the nitrergic and serotoninergic systems, we studied the effect of serotonin on nNOS activities. Our results reveal that nNOS is activated by serotonin as both NADPH consumption and oxyhemoglobin (OxyHb) oxidation were enhanced. The generation of L-citrulline from L-arginine (L-Arg) was not affected by serotonin in the range of 0-200 microM, suggesting an additional production of oxygen-derived species. But 5-hydroxytryptamine (5HT) induced the formation of both O and H(2)O(2) by nNOS, as evidenced by electron paramagnetic resonance (EPR) and by using specific spin traps. Overall, these results demonstrate that serotonin is able to activate nNOS, leading to the generation of reactive oxygen species (ROS) in addition to the NO(.-) production. Such a property must be considered in vivo as various nNOS-derived products mediate different signaling pathways.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/10715760601105681 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!