The entrainment limits to light-dark cycles can be modified by the experimental conditions under which they are tested. Among the factors that may influence entrainment is the amount of wheel running exerted by the animal. In the present work, the effects of transitory and continuous wheel running on entrainment to light-dark cycles were tested using a range of T cycles at the entrainment limits. Four groups of female hamsters were submitted to 1 h stepwise changes in T cycles. Two groups were exposed to T cycles of which the period was shortened at the lower limit from T22 to T18, and the other two groups were exposed to cycles that lengthened at the upper limit from T27 to T32. One of the groups at the lower limit and one at the upper limit had continuous access to a running wheel, while the others had the wheel locked, except at certain T when a lack of period control by T cycle appeared. The study demonstrates that access to running wheel widens the limits of entrainment to LD cycles. Specifically, the following observations were made: the effects of wheel running for entrainment were more evident in the groups with continuous access to wheel, as they did entrain to T19 and T32; continuous access to a wheel produced aftereffects only after T19, but not under T32; and when animals without a wheel showed relative coordination, unlocking the wheel favored entrainment in all the animals at T31, but in only 1 out 6 at T19. All of these indicate a different effect of the wheel running on the upper and lower limits of entrainment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/07420520701282240 | DOI Listing |
Neuroscience
January 2025
Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, No.58 Zhongshan Road 2, Guangzhou 510080, China. Electronic address:
Acute peripheral vestibular dysfunction is associated with a variety of postural and balance disturbances. Vestibular rehabilitation training (VRT) is widely acknowledged as an effective intervention for promoting vestibular compensation. Nevertheless, the broader implementation of early VRT is hindered by an incomplete understanding of its neurobiological mechanisms.
View Article and Find Full Text PDFDev Psychobiol
January 2025
Department of Psychological & Brain Sciences, University of Delaware, Newark, Delaware, USA.
Exercise can be leveraged as an important tool to improve neural and psychological health, either on its own or to bolster the efficacy of evidence-based treatment modalities. Research in both humans and animal models shows that positive experiences, such as exercise, promote neuroprotection while, in contrast, aversive experiences, particularly those in early development, are often neurologically and psychologically disruptive. In the current study, we employed a preclinical model to investigate the therapeutic benefits of exercise on gene expression in the brains of adult rats.
View Article and Find Full Text PDFBrain Res
January 2025
Department of Physiology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran; Neurophysiology Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran. Electronic address:
Within the aging cortex, amyloid beta peptide (Aβ) is a crucial element of the senile plaques, a hallmark feature often observed in cases of Alzheimer's disease (AD). The UPR (unfolded protein response), a cellular mechanism for protein folding, is switched on by Aβ accumulation. Endoplasmic reticulum (ER) stress has been identified as playing a role in aging and the development of neurodegenerative diseases.
View Article and Find Full Text PDFPhysiol Behav
January 2025
Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA. Electronic address:
C1q/TNF-related protein 14 (CTRP14), also known as C1q-like 1 (C1QL1), is a synaptic protein predominantly expressed in the brain. It plays a critical role in the formation and maintenance of the climbing fiber-Purkinje cell synapses, ensuring that only one single winning climbing fiber from the inferior olivary neuron synapses with the proximal dendrites of Purkinje cells during the early postnatal period. Loss of CTRP14/C1QL1 results in incomplete elimination of supernumerary climbing fibers, leading to multiple persistent climbing fibers synapsing with the Purkinje cells.
View Article and Find Full Text PDFJ Pineal Res
January 2025
Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu, Sichuan, China.
Circadian rhythm disruption (CRD), stemming from sleep disorders and/or shift work, is a risk factor for reproductive dysfunction. CRD has been reported to disturb nocturnal melatonin signaling, which plays a crucial role in female reproduction as a circadian regulator and an antioxidant. The hypothalamic-pituitary-ovarian (HPO) axis regulates female reproduction, with luteinizing hormone (LH) pulse pattern playing a pivotal role in folliculogenesis and steroidogenesis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!