6-mercaptopurine (6-MP) is a purine analogue used in childhood leukemia. Because of the oral bioavailability of 6-MP is low and highly variable, the aim of this study was to develop a new parenteral formulation that can prolong the biological half-life of the drug, improve its therapeutic efficacy, and its associated reduce side effects. Conventional and stealth 6-MP liposomes were prepared by a thin film hydration technique followed by a high-pressure homogenization process and characterized for percent entrapment efficiency (%EE), particle size, and stability in human plasma. Pharmacokinetic, tissue distribution, and biochemical analysis were performed after intravenous (IV) administration of all formulations of 6-MP on rats. The conventional liposomes were found less stable than stealth liposomes in human plasma at 37 degrees C. Stealth liposomes exhibited high peak plasma concentration (C(max)), and long circulating capacity in blood and biological half-life. The uptake of stealth liposomes by the liver and spleen and accumulation in the kidney were significantly less than that of conventional liposomes and the free drug. Serum urea, creatinine, GOT (Glutamic Oxaloacetic Transaminase), and GPT (Glutamic Pyruvic Transaminase) increased significantly in rats given an IV injection of conventional liposomes and the free drug, but not in those administered with the same dose of stealth liposomes. Stealth liposomes may help to increase therapeutic efficacy of 6-MP and to reduce total amount of dose as well as frequency of the dose. It also may reduce the possibility of the risk of toxicity to the liver and kidney generally associated with free 6-MP.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/07357900701224862 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!