A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Transactivation of ERalpha by Rosiglitazone induces proliferation in breast cancer cells. | LitMetric

Transactivation of ERalpha by Rosiglitazone induces proliferation in breast cancer cells.

Breast Cancer Res Treat

Department of Molecular and Biomedical Pharmacology, University of Kentucky College of Medicine, MS 305, Chandler Medical Center, Lexington, KY 40536, USA.

Published: March 2008

In the present study, we demonstrate that Rosiglitazone (Rosi), a thiazolidinedione and PPARgamma agonist, induces ERE (Estrogen Receptor Response Element) reporter activity, pS2 (an endogenous ER gene target) expression, and proliferation of ER positive breast cancer (MCF-7) cells. By performing a dose-response assay, we determined that high concentrations of Rosi inhibit proliferation, while low concentrations of Rosi induce proliferation. Using the anti-estrogen ICI, ER negative breast cancer (MDA-MB-231) cells, and a prostate cancer cell line (22Rv1) deficient in both ERalpha and PPARgamma, we determined that Rosiglitazone-induced ERE reporter activation and proliferation is through an ERalpha dependent mechanism. Rosiglitazone-induced ERE activation is also dependent on activation of the Extracellular Signal-Regulated Kinase-Mitogen Activated Protein Kinase (ERK-MAPK) pathway, since it is inhibited by co-treatment with U0126, a specific inhibitor of this pathway. We also demonstrate that when ERalpha and PPARgamma are both present, they compete for Rosi, inhibiting each others transactivation. To begin to unravel the pharmacological mechanism of Rosi-induced ER activation, sub-maximally effective concentrations of E(2) were used in combination with increasing concentrations of Rosi in luciferase reporter assays. From these assays it appears that E(2) and Rosi both activate ERalpha via similar pharmacological mechanisms. Furthermore sub-maximally effective concentrations of E(2) and Rosi additively increase both ERE reporter activity and MCF-7 cell proliferation. The results of this study may have clinical relevancy for Rosi's use both as an anti-diabetic in post-menopausal women and as an anti-cancer drug in women with ER positive breast cancer.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10549-007-9575-yDOI Listing

Publication Analysis

Top Keywords

breast cancer
16
concentrations rosi
16
reporter activity
8
positive breast
8
eralpha ppargamma
8
rosiglitazone-induced ere
8
ere reporter
8
sub-maximally effective
8
effective concentrations
8
rosi
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!