A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Mapping locust habitats in the Amudarya River Delta, Uzbekistan with multi-temporal MODIS imagery. | LitMetric

Mapping locust habitats in the Amudarya River Delta, Uzbekistan with multi-temporal MODIS imagery.

Environ Manage

Wyoming Geographic Information Science Center, University of Wyoming, Laramie, WY, 82071, USA,

Published: June 2007

Reed beds of Phragmites australis in the River Amudarya delta near the Aral Sea constitute permanent breeding areas of the Asian Migratory locust, Locusta migratoria migratoria. Every year, thousands of hectares are treated with broad-spectrum insecticides to prevent locust swarms from damaging crops in adjacent areas. To devise efficient locust monitoring and management plans, accurate and updated information about the spatial distribution of reeds is necessary. Given the vast geographic extent of the delta, traditional, ground survey methods are inadequate. Remotely sensed data collected by the MODIS sensor aboard the TERRA satellite provide a useful tool to characterize the spatial distribution of reeds. Multi-temporal MODIS data, collected at different times of the growing season, were used to generate spectral-temporal signatures for reeds and other land cover classes. These spectral-temporal signatures were matched with reed phenology. MODIS information was digitally classified to generate a land cover map with an overall accuracy of 74%. MODIS data captured 87% of the ground-verified reed locations. Estimates derived from MODIS data indicate that 18% of the study area was covered by reeds. However, high commission error resulted from misclassification of reeds mixed with shrubs class and shrubs class as reeds. This could have resulted in overprediction of the area covered by reeds. Additional research is needed to minimize the overlap between reeds and other vegetation classes (shrubs, and reed and shrub mix). Nevertheless, despite its relatively low spatial resolution (250 m), multi-temporal MODIS data were able to adequately capture the distribution of reeds. Instead of blanketing the fragile wetland ecosystem of the Amudarya delta with chemical anti-locust treatments, plant protection specialists can use this information to devise ecologically sound pest management plans aimed at reducing the adverse environmental impact in the zone of the Aral Sea ecological catastrophe. MODIS methodology to identify reed stands can be applicable to the Migratory locust habitats in other geographic areas.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00267-006-0193-yDOI Listing

Publication Analysis

Top Keywords

modis data
16
multi-temporal modis
12
distribution reeds
12
reeds
9
locust habitats
8
modis
8
amudarya delta
8
aral sea
8
migratory locust
8
management plans
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!