Extracellular cGMP in the striatum of rats exposed to 3000 ppm carbon monoxide (CO) or 8% O2 was decreased during the early period of exposure. Thereafter, extracellular cGMP in rats exposed to CO, but not 8% O2, was transiently increased. A nitric oxide (NO) synthase inhibitor, NG-nitro-L-arginine, strongly reduced the steady-state level of extracellular cGMP in the striatum, indicating a primary role of NO in cGMP production. However, it failed to suppress the CO-induced increase in extracellular cGMP in the striatum. These findings suggest that CO may stimulate cGMP production in rat striatum independently of NO and hypoxia.

Download full-text PDF

Source
http://dx.doi.org/10.1254/jphs.sc0070062DOI Listing

Publication Analysis

Top Keywords

extracellular cgmp
16
rats exposed
12
cgmp striatum
12
striatum rats
8
carbon monoxide
8
cgmp production
8
cgmp
7
striatum
5
nitric oxide-independent
4
oxide-independent cgmp
4

Similar Publications

Osteoarthritis (OA) is a joint disease characterized by articular cartilage degradation. Persistent low-grade inflammation defines OA pathogenesis, with crucial involvement of pro-inflammatory M1-like macrophages. While mesenchymal stromal cells (MSC) and their small extracellular vesicles (sEV) hold promise for OA treatment, achieving consistent clinical-grade sEV products remains a significant challenge.

View Article and Find Full Text PDF

EDNRB negatively regulates glycolysis to exhibit anti-tumor functions in prostate cancer by cGMP/PKG pathway.

Mol Cell Endocrinol

January 2025

Department of Urology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang Uygur Autonomous Region, 830001, China. Electronic address:

Prostate cancer (PCa) is the most prevalent cancer in men and the leading cause of cancer-related mortality. Recent studies have highlighted the pivotal role of glycolysis in tumor progression. This study aimed to investigate the involvement of the EDNRB gene and its ligand endothelin 3 (EDN3) in glycolysis in PCa and to elucidate its underlying molecular mechanism.

View Article and Find Full Text PDF

Targeted knockdown of ATM, ATR, and PDEδ increases Gag HIV-1 VLP production in HEK293 cells.

Appl Microbiol Biotechnol

January 2025

Grup d'Enginyeria de Bioprocessos i Biocatàlisi Aplicada, ENG4BIO, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Campus de Bellaterra, Cerdanyola del Vallès, 08193, Barcelona, Spain.

Several strategies have been developed in recent years to improve virus-like particle (VLP)-based vaccine production processes. Among these, the metabolic engineering of cell lines has been one of the most promising approaches. Based on previous work and a proteomic analysis of HEK293 cells producing Human Immunodeficiency Virus-1 (HIV-1) Gag VLPs under transient transfection, four proteins susceptible of enhancing VLP production were identified: ataxia telangiectasia mutated (ATM), ataxia telangiectasia and rad3-related (ATR), DNA-dependent protein kinase catalytic subunit (DNA-PKcs), and retinal rod rhodopsin-sensitive cGMP 3',5'-cyclic phosphodiesterase subunit delta (PDEδ).

View Article and Find Full Text PDF

Background: Breast cancer (BC) is the most common cancer in women. Likewise, canine mammary tumors (CMT) represent the most common cancer in intact female dogs and develop in the majority spontaneously. Similarities exist in clinical presentation, histopathology, biomarkers, and treatment.

View Article and Find Full Text PDF

Evaluation of the Biological Effect of a Nicotinamide-Containing Broad-Spectrum Sunscreen on Photodamaged Skin.

Dermatol Ther (Heidelb)

December 2024

Centro de Investigación Biomédica en Red de Enfermedades Raras, CIBERER, Instituto de Salud Carlos III, Barcelona, Spain.

Introduction: UVA-UVB increases skin matrix metalloproteinases and breaks down extracellular proteins and fibrillar type 1 collagen, leading to photodamage. Topical application of nicotinamide prevents UV-induced immunosuppression. Several studies have demonstrated the importance of protection against UV.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!