Protein crystallization by surface entropy reduction: optimization of the SER strategy.

Acta Crystallogr D Biol Crystallogr

Department of Molecular Physiology and Biological Physics and Integrated Center for Structure-Function Innovation, University of Virginia, Charlottesville, Virginia 22908-0736, USA.

Published: May 2007

A strategy of rationally engineering protein surfaces with the aim of obtaining mutants that are distinctly more susceptible to crystallization than the wild-type protein has previously been suggested. The strategy relies on replacing small clusters of two to three surface residues characterized by high conformational entropy with alanines. This surface entropy reduction (or SER) method has proven to be an effective salvage pathway for proteins that are difficult to crystallize. Here, a systematic comparison of the efficacy of using Ala, His, Ser, Thr and Tyr to replace high-entropy residues is reported. A total of 40 mutants were generated and screened using two different procedures. The results reaffirm that alanine is a particularly good choice for a replacement residue and identify tyrosines and threonines as additional candidates that have considerable potential to mediate crystal contacts. The propensity of these mutants to form crystals in alternative screens in which the normal crystallization reservoir solutions were replaced with 1.5 M NaCl was also examined. The results were impressive: more than half of the mutants yielded a larger number of crystals with salt as the reservoir solution. This method greatly increased the variety of conditions that yielded crystals. Taken together, these results suggest a powerful crystallization strategy that combines surface engineering with efficient screening using standard and alternate reservoir solutions.

Download full-text PDF

Source
http://dx.doi.org/10.1107/S0907444907010931DOI Listing

Publication Analysis

Top Keywords

surface entropy
8
entropy reduction
8
reservoir solutions
8
protein crystallization
4
surface
4
crystallization surface
4
reduction optimization
4
optimization ser
4
strategy
4
ser strategy
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!