During an immune response, activated antigen (Ag)-specific T cells condition dendritic cells (DCs) to enhance DC function and survival within the inflamed draining lymph node (LN). It has been difficult to ascertain the role of the tumor necrosis factor (TNF) superfamily member lymphotoxin-alphabeta (LTalphabeta) in this process because signaling through the LTbeta-receptor (LTbetaR) controls multiple aspects of lymphoid tissue organization. To resolve this, we have used an in vivo system where the expression of TNF family ligands is manipulated only on the Ag-specific T cells that interact with and condition Ag-bearing DCs. We report that LTalphabeta is a critical participant required for optimal DC function, independent of its described role in maintaining lymphoid tissue organization. In the absence of LTalphabeta or CD40L on Ag-specific T cells, DC dysfunction could be rescued in vivo via CD40 or LTbetaR stimulation, respectively, suggesting that these two pathways cooperate for optimal DC conditioning.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2118582PMC
http://dx.doi.org/10.1084/jem.20061968DOI Listing

Publication Analysis

Top Keywords

ag-specific cells
12
lymphoid tissue
8
tissue organization
8
cells
5
expression lymphotoxin-alphabeta
4
lymphotoxin-alphabeta antigen-specific
4
antigen-specific cells
4
cells required
4
required function
4
function immune
4

Similar Publications

Anti-PD-L1 Antibody Fragment Linked to Tumor-Targeting Lipid Nanoparticle Can Eliminate Cancer and Its Metastasis via Photoimmunotherapy.

ACS Nano

December 2024

Department of Microbiology, Brain Korea 21 Project, University of Ulsan College of Medicine, ASAN Medical Center, Seoul 05505, South Korea.

Effective cancer therapy aims to treat primary tumors and metastatic and recurrent cancer. Immune checkpoint blockade-mediated immunotherapy has shown promising effects against tumors; however, its efficacy in metastatic or recurrent cancer is limited. Here, based on the advantages of nanomedicine, lipid nanoparticles (LNPs) that can target tumors are synthesized for photothermal therapy (PTT) and immunotherapy to treat primary and metastatic recurrent cancer.

View Article and Find Full Text PDF

Immunotherapy has shown promise for treating patients with autoimmune diseases or cancer, yet treatment is associated with adverse effects associated with global activation or suppression of T cell immunity. Here, we developed antigen-presenting nanoparticles (APNs) to selectively engineer disease antigen (Ag)-specific T cells by mRNA delivery. APNs consist of a lipid nanoparticle core functionalized with peptide-major histocompatibility complexes (pMHCs), facilitating antigen-specific T cell transfection through cognate T cell receptor-mediated endocytosis.

View Article and Find Full Text PDF

Objective: Cysteamine, a drug approved to treat cystinosis, has been proposed as a host-directed therapy for (Mtb) and SARS-CoV-2. The impact of cysteamine on the immune responses has not been fully investigated. We aimed to evaluate the immunomodulatory effects of cysteamine on peripheral blood mononuclear cells (PBMCs) using the purified protein derivative (PPD) as a recall antigen, and an unspecific stimulus as staphylococcal enterotoxin B (SEB).

View Article and Find Full Text PDF

Deeper understanding of the crosstalk between host cells and (Mtb) provides crucial guidelines for the rational design of novel intervention strategies against tuberculosis (TB). Mycobacteria possess a unique complex cell wall with arabinogalactan (AG) as a critical component. AG has been identified as a virulence factor of Mtb which is recognized by host galectin-9.

View Article and Find Full Text PDF

Influenza virus is a highly contagious respiratory pathogen causing between 9.4 and 41 million infections per year in the United States in the last decade. Annual vaccination is recommended by the World Health Organization, with the goal to reduce influenza severity and transmission.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!