The gene products of the ugp operon of Escherichia coli are responsible for the uptake of sn-glycerol-3-phosphate and certain glycerophosphodiesters. The regulation of ugp is mainly phoBR-dependent. Significant expression, however, can be observed even in the presence of high concentrations of phosphate, a condition which normally completely represses pho expression. Pho-independent ugp expression was found to be derepressed during the late logarithmic growth phase due to carbon starvation. Among different carbon sources tested, glucose caused the most complete repression. Addition of cAMP prevented glucose repression, indicating that a cAMP-CRP control mechanism may be directly or indirectly involved in the carbon-starvation response. This conclusion is supported by the fact that pho-independent ugp expression correlated with the presence of the cya and crp gene products.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/BF00290646 | DOI Listing |
Int J Mol Sci
January 2021
Department of Molecular Biology, Microbiology Section, University of León, 24071 León, Spain.
Phosphorous, in the form of phosphate, is a key element in the nutrition of all living beings. In nature, it is present in the form of phosphate salts, organophosphates, and phosphonates. Bacteria transport inorganic phosphate by the high affinity phosphate transport system PstSCAB, and the low affinity PitH transporters.
View Article and Find Full Text PDFJ Bacteriol
April 2015
Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brazil
Unlabelled: Mutations that cause the constitutive expression of the PHO regulon of Escherichia coli occur either in the pst operon or in the phoR gene, which encode, respectively, a high-affinity Pi transport system and a histidine kinase sensor protein. These mutations are normally selected on glycerol-2-phosphate (G2P) as the carbon source in the presence of excess Pi. The emergence of early PHO-constitutive mutants, which appear after growth for up to 48 h on selective medium, depends on the presence of phoA, which codes for a periplasmic alkaline phosphatase, while late mutants, which appear after 48 h, depend both on phoA and on the ugp operon, which encodes a glycerophosphodiester transport system.
View Article and Find Full Text PDFJ Bacteriol
July 2009
Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
During phenotypic characterization of various Escherichia coli mutants, we observed that DeltaphoA strains are capable of using glycerol-2-phosphate (G2P) as a sole source of phosphorus. Mutations in the ugpBAECQ operon eliminated this phenotype, suggesting that G2P is a previously unrecognized substrate for the binding protein-dependent Ugp transporter.
View Article and Find Full Text PDFJ Bacteriol
February 2008
RIKEN SPring-8 Center, Harima Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan.
Escherichia coli cytosolic glycerophosphodiester phosphodiesterase, UgpQ, functions in the absence of other proteins encoded by the ugp operon and requires Mg2+, Mn2+, or Co2+, in contrast to Ca2+-dependent periplasmic glycerophosphodiester phosphodiesterase, GlpQ. UgpQ has broad substrate specificity toward various glycerophosphodiesters, producing sn-glycerol-3-phosphate and the corresponding alcohols. UgpQ accumulates under conditions of phosphate starvation, suggesting that it allows the utilization of glycerophosphodiesters as a source of phosphate.
View Article and Find Full Text PDFJ Bacteriol
October 1993
Department of Molecular Cell Biology, Utrecht University, The Netherlands.
The periplasmic binding protein-dependent transport systems Ugp and Mal of Escherichia coli transport sn-glycerol-3-phosphate and maltose, respectively. The UgpC and MalK proteins of these transport systems, which couple energy to the transport process by ATP-hydrolysis, are highly homologous, suggesting that they might be functionally exchangeable. Complementation experiments showed that UgpC expression could restore growth of a malK mutant on maltose as a carbon source, provided that it was expressed at a sufficiently high level in the absence of the integral inner membrane components UgpA and/or UgpE of the Ugp system.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!