The 1.4-A crystal structure of the S. pombe Pop2p deadenylase subunit unveils the configuration of an active enzyme.

Nucleic Acids Res

Centre for Structural Biology, Department of Molecular Biology, University of Aarhus, Gustav Wieds Vej 10c, DK-8000 Arhus C, Denmark.

Published: June 2007

Deadenylation is the first and probably also rate-limiting step of controlled mRNA decay in eukaryotes and therefore central for the overall rate of gene expression. In yeast, the process is maintained by the mega-Dalton Ccr4-Not complex, of which both the Ccr4p and Pop2p subunits are 3'-5' exonucleases potentially responsible for the deadenylation reaction. Here, we present the crystal structure of the Pop2p subunit from Schizosaccharomyces pombe determined to 1.4 A resolution and show that the enzyme is a competent ribonuclease with a tunable specificity towards poly-A. In contrast to S. cerevisiae Pop2p, the S. pombe enzyme contains a fully conserved DEDDh active site, and the high resolution allows for a detailed analysis of its configuration, including divalent metal ion binding. Functional data further indicates that the identity of the ions in the active site can modulate both activity and specificity of the enzyme, and finally structural superposition of single nucleotides and poly-A oligonucleotides provide insight into the catalytic cycle of the protein.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1888821PMC
http://dx.doi.org/10.1093/nar/gkm178DOI Listing

Publication Analysis

Top Keywords

crystal structure
8
active site
8
14-a crystal
4
structure pombe
4
pop2p
4
pombe pop2p
4
pop2p deadenylase
4
deadenylase subunit
4
subunit unveils
4
unveils configuration
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!