Plasmodium falciparum, the protozoan that causes the most lethal form of human malaria, has been controlled principally by two safe, affordable drugs, chloroquine and sulfadoxine-pyrimethamine (SP). Studies in the laboratory and in the field have demonstrated that resistance to SP depends on non-synonymous point mutations in the dihydrofolate reductase (DHFR), and dihydropteroate synthase (DHPS) coding regions. Parasites that carry dhfr genes with 3 or 4 point mutations (51I/59R/108N triple mutation or 51I/59R/108N/164L quadruple mutation) are resistant to pyrimethamine in vitro and patients infected with these parasites respond poorly to SP treatment. The wide spread of these pyrimethamine-resistant alleles demonstrates the increased fitness over drug-sensitive alleles in the presence of the drug. However, it is not clear whether these alleles might reduce the fitness of parasites in the absence of drug pressure. As a first step, we compared the kinetic properties of the wild type, and three mutant alleles to determine whether the native DHFR-thymidylate synthase form of the mutant proteins showed compromised activity in vitro. The mutant enzymes had K(m) values for their substrate, dihydrofolate that were significantly lower than the wild type, k(cat) values in the same range as the wild type enzyme, and k(cat)/K(m) values higher than wild type. In contrast, the K(m) values for the NADPH cofactor were higher than wild type for the mutant enzymes. These observations suggest that the fitness of these parasites may not be compromised relative to those that carry the wild type allele, even without sustained SP drug pressure.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2020854PMC
http://dx.doi.org/10.1016/j.molbiopara.2007.03.009DOI Listing

Publication Analysis

Top Keywords

wild type
24
dihydrofolate reductase
8
plasmodium falciparum
8
point mutations
8
fitness parasites
8
drug pressure
8
mutant enzymes
8
higher wild
8
wild
6
type
6

Similar Publications

The molar dose of FAPI administered impacts on the FAP-targeted PET imaging and therapy in mouse syngeneic tumor models.

Eur J Nucl Med Mol Imaging

January 2025

Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China.

Purpose: Since fibroblast activation protein (FAP), one predominant biomarker of cancer associated fibroblasts (CAFs), is highly expressed in the tumor stroma of various epidermal-derived cancers, targeting FAP for tumor diagnosis and treatment has shown substantial potentials in both preclinical and clinical studies. However, in preclinical settings, tumor-bearing mice exhibit relatively low absolute FAP expression levels, leading to challenges in acquiring high-quality PET images using radiolabeled FAP ligands (FAPIs) with low molar activity, because of which a saturation effect in imaging is prone to happen. Moreover, how exactly the molar dose of FAPI administered to a mouse influences the targeted PET imaging and radiotherapy remains unclear now.

View Article and Find Full Text PDF

Cystic Fibrosis (CF) is a life-threatening hereditary disease resulting from mutations in the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) gene that encodes a chloride channel essential for ion transport in epithelial cells. Mutations in CFTR, notably the prevalent F508del mutation, impair chloride transport, severely affecting the respiratory system and leading to recurrent infections. Recent therapeutic advancements include CFTR modulators such as ETI, a combination of two correctors (Elexacaftor and Tezacaftor) and a potentiator (Ivacaftor), that can improve CFTR function in patients with the F508del mutation.

View Article and Find Full Text PDF

Chromatin Accessibility Mediated by CHROMATIN REMODELING 11 Promotes Chilling Tolerance in Rice.

Plant Physiol

January 2025

The State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China.

Chromatin remodeling plays a crucial role in controlling gene transcription by modifying chromatin structure. However, the involvement of chromatin remodeling in plant stress responses, especially cold tolerance, through chromatin accessibility remains largely unexplored. Here, we report that rice (Oryza sativa L.

View Article and Find Full Text PDF

Synthetic rational design of live-attenuated Zika viruses based on a computational model.

Nucleic Acids Res

January 2025

SynVaccine Ltd, Ramat Hachayal, 3 Golda Meir Street, Science Park, Nes Ziona 7403648, Israel.

Many viruses of the Flaviviridae family, including the Zika virus (ZIKV), are human pathogens of significant public health concerns. Despite extensive research, there are currently no approved vaccines available for ZIKV and specifically no live-attenuated Zika vaccine. In this current study, we suggest a novel computational algorithm for generating live-attenuated vaccines via the introduction of silent mutation into regions that undergo selection for strong or weak local RNA folding or into regions that exhibit medium levels of sequence conservation.

View Article and Find Full Text PDF

Objective: This study was undertaken to test the following hypotheses in the Atp1a3 mouse (which carries the most common human ATP1A3 (the major subunit of the neuronal Na/K-adenosine triphosphatase [ATPase]) mutation, D801N): sudden unexpected death in epilepsy (SUDEP) occurs during seizures and is due to terminal apneas in some and due to lethal cardiac arrhythmias in others; and Atp1a3 mice have central cardiorespiratory dysregulation and abnormal respiratory drive.

Methods: Comparison was made of littermate wild-type and Atp1a3 groups using (1) simultaneous in vivo video-telemetry recordings of electroencephalogram, electrocardiogram, and breathing; (2) whole-body plethysmography; and (3) hypoglossal nerve recordings.

Results: In Atp1a3 mice, (1) SUDEP consistently occurred during seizures that were more severe than preterminal seizures; (2) seizure clustering occurred in periods preceding SUDEP; (3) slowing of breathing rate (BR) and heart rate was observed preictally before preterminal and terminal seizures; and (4) the sequence during terminal seizures was as follows: bradypnea with bradycardia/cardiac arrhythmias, then terminal apnea, followed by terminal cardiac arrhythmias.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!