Hyperoxia decreases cutaneous blood flow in high-perfusion areas.

Microvasc Res

Departments of Anaesthesiology and Intensive Care and the Burn Intensive Care Unit, Hands and Plastic Surgery, Faculty of Health Sciences, University Hospital, SE-581 85 Linköping, Sweden.

Published: July 2007

The mechanism by which hyperoxia decreases blood flow is still not understood. Hyperoxemia-induced vasoconstriction is known to occur in many organs, including brain and retina, skeletal muscle, and myocardium. Whether this also occurs in skin is unknown. This study was conducted in healthy volunteers exposed intermittently to 100% oxygen (F(I)O(2) 1.0). Perfusion of forearm skin was measured by laser Doppler imaging (LDI). In series 1, it was measured in 7 subjects before, during, and after 15 min of oxygen breathing. In series 2, flow was measured, also during air and O(2) breathing, after perfusion was raised by (a) sympathetic blockade (induced by a topically applied local anesthetic) (n=9) and by (b) current-induced vasodilation (n=8). In normal unperturbed skin, there was no significant change with hyperoxia. When basal perfusion was raised by topical anesthesia or by current, there was also no change in mean perfusion overall with hyperoxia. However, areas with the highest perfusion (upper decile) showed a significant perfusion decrement with hyperoxia (-30% and -20%, respectively; p<0.001). Vasoconstriction with hyperoxia has been demonstrated in human skin. The fact that it is observed only when flow is increased above basal levels and then only in high-flow vessels suggests that cutaneous blood flow control is primarily regulated by variables other than oxygen.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.mvr.2007.02.001DOI Listing

Publication Analysis

Top Keywords

hyperoxia decreases
8
blood flow
8
perfusion raised
8
perfusion
6
hyperoxia
5
decreases cutaneous
4
cutaneous blood
4
flow high-perfusion
4
high-perfusion areas
4
areas mechanism
4

Similar Publications

Bronchopulmonary dysplasia (BPD) is a serious complication in premature infants. This study aimed to investigate the mechanism of mitogen-activated protein 3 kinase 7 (Map3k7) affecting BPD by regulating caspase-1 mediated pyroptosis. The morphology of the lung tissue was observed using hematoxylin-eosin staining.

View Article and Find Full Text PDF

Pulmonary hypertension (PH) increases the mortality of preterm infants with bronchopulmonary dysplasia (BPD). There are no curative therapies for this disease. Lung endothelial carnitine palmitoyltransferase 1a (Cpt1a), the rate-limiting enzyme of the carnitine shuttle system, is reduced in a rodent model of BPD.

View Article and Find Full Text PDF

The tambaqui (Colossoma macropomum, G. Cuvier 1818) thrives both in the ion-poor waters of the Amazon and in commercial aquaculture. In both, environmental conditions can be harsh due to low ion levels, occasional high salt challenges (in aquaculture), low pH, extreme PO levels (hypoxia and hyperoxia), high PCO levels (hypercapnia), high ammonia levels (in aquaculture), and high and low temperatures.

View Article and Find Full Text PDF

Maternal Lactobacillus johnsonii supplementation attenuates hyperoxia-induced lung injury in neonatal mice through microbiota regulation.

Pediatr Neonatol

December 2024

Department of Pediatrics, Taipei Medical University Hospital, Taipei, Taiwan; Department of Pediatrics, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; TMU Research Center for Digestive Medicine, Taipei Medical University, Taiwan. Electronic address:

Background: Supplemental oxygen impairs lung development in premature infants with respiratory distress. This study investigated the effects of maternal Lactobacillus johnsonii supplementation on hyperoxia-induced lung injury in neonatal mice.

Methods: Pregnant C57BL/6 mice received L.

View Article and Find Full Text PDF

Objective: Epithelial-mesenchymal transition (EMT) of alveolar epithelial cells is an important mechanism for the onset and development of broncho-pulmonary dysplasia (BPD).The role of FGF-2 in BPD is currently unclear. The aim of our study is to investigate the expression of FGF-2 in lung tissue of BPD mice, to further clarify the effect of FGF-2 on EMT in alveolar epithelial cells and to actively search for possible signaling pathways.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!