The distribution of perineuronal nets and the potassium channel subunit Kv3.1b was studied in the subdivisions of the cochlear nucleus, the medial nucleus of the trapezoid body, the medial and lateral superior olivary nuclei, the lateral lemniscal nucleus and the inferior colliculus of the rhesus monkey. Additional sections were used for receptor autoradiography to visualize the patterns of GABAA and GABAB receptor distribution. The Kv3.1b protein and perineuronal nets [visualized as Wisteria floribunda agglutinin (WFA) binding] were revealed, showing corresponding region-specific patterns of distribution. There was a gradient of labelled perineuronal nets which corresponded to that seen for the intensity of Kv3.1b expression. In the cochlear nucleus intensely and faintly stained perineuronal nets were intermingled, whereas in the medial nucleus of the trapezoid body the pattern changed to intensely stained perineuronal nets in the medial part and weakly labelled nets in its lateral part. In the inferior colliculus, intensely labelled perineuronal nets were arranged in clusters and faintly labelled nets were arranged in sheets. Using receptor autoradiography, GABAB receptor expression in the anterior ventral cochlear nucleus was revealed. The medial part of the medial nucleus of the trapezoid body showed a high number of GABAA binding sites whereas the lateral part exhibited more binding sites for GABAB. In the inferior colliculus, we found moderate GABAB receptor expression. In conclusion, intensely WFA-labelled structures are those known to be functionally involved in high-frequency processing.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2375744 | PMC |
http://dx.doi.org/10.1111/j.1469-7580.2007.00713.x | DOI Listing |
Int J Mol Sci
January 2025
Department of Neuroregeneration, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105 BA Amsterdam, The Netherlands.
Semaphorin 3A (Sema3A) is an axon guidance molecule, which is also abundant in the adult central nervous system (CNS), particularly in perineuronal nets (PNNs). PNNs are extracellular matrix structures that restrict plasticity. The cellular sources of Sema3A in PNNs are unknown.
View Article and Find Full Text PDFMol Psychiatry
January 2025
Department of Bioscience, University of Oslo, Oslo, Norway.
Perineuronal nets (PNNs) are a condensed form of extracellular matrix primarily found around parvalbumin-expressing (PV+) interneurons. The postnatal maturation of PV+ neurons is accompanied with the formation of PNNs and reduced plasticity. Alterations in PNN and PV+ neuron function have been described for mental disorders such as schizophrenia and autism.
View Article and Find Full Text PDFFront Neurol
January 2025
Institution of Traditional Chinese Medicine Innovation Research, Shandong University of Traditional Chinese Medicine, Jinan, China.
Background: In nature, animals must learn to recognize danger signals and respond immediately to threats to improve their environmental adaptation. However, excessive fear responses can lead to diseases such as post-traumatic stress disorder, wherein traumatic events result in persistent traumatic memories. Therefore, erasing pathological fear memories is a crucial topic in neuroscience for understanding the nature of memories and treating clinically relevant diseases.
View Article and Find Full Text PDFCommun Biol
January 2025
Department of Biology, McGill University, Montreal, QC, Canada.
The accurate and reliable performance of learned vocalizations (e.g., speech and birdsong) modulates the efficacy of communication in humans and songbirds.
View Article and Find Full Text PDFNeurorehabil Neural Repair
January 2025
Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada.
Background: There is a critical time window of post-stroke neuroplasticity when spontaneous behavioral recovery occurs. Potential factors responsible for this heightened plasticity are the reduction of parvalbumin-immunoreactive (PV+) interneuron inhibitory signaling and the disappearance of extracellular matrix synaptic stabilizers called perineuronal net(s; PNN/PNNs).
Objective: This study investigated whether behavioral recovery during this critical period following stroke is associated with changes in densities of PV+ interneurons and PNNs.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!