We report a soft gel machine reconstructed from muscle proteins. We have found that chemically cross-linked polymer-actin complex gel can move on myosin coated surface with a velocity as high as that of native F-actin, by coupling to ATP hydrolysis. Additionally, it is shown that the velocity and motional pattern of polymer-actin complex gel depends on the morphology of polymer-complex gels. Since the designing of functional actuator into well-defined size and morphology is important, the structural behavior of polymer-actin complexes has been investigated. This result shows that the morphology and growth size of polymer-actin complex can be controlled by change of electrostatic interaction between F-actins and polycations. Our results indicate that bio actuator with desired shape can be created by using polymer-actin complex.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1166/jnn.2007.510 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!