Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Aspects of the growth mechanism of silver triangular nanoplates by photochemical synthesis were addressed by detailed characterization using ultraviolet-visible spectroscopy, electron microscopies, and atomic force microscopy. The quantitative characterization of their size and thickness during the reaction showed that both increase with time as well as the aspect ratio. Samples irradiated by different wavelengths showed that the size of the nanoplates can be controlled by the incident wavelength and it is responsible for the increase of the aspect ratio, but the thickness seems to be determined by the conditions of the initial seeds. It was also found that irradiation with wavelength out of resonance with the surface plasmon of the initial seeds leads to a slower kinetics. The results suggested that rational exploration of the synthesis parameter such as the type of the initial seeds in combination with the wavelength irradiation may lead to a broader type of particles already obtained by this method.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1166/jnn.2007.131 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!