A novel third-generation biosensor for hydrogen peroxide (H202) has been constructed based on horseradish peroxidase (HRP) immobilized by the sol-gel (SG) technology on carbon nanotube (CNT)-modified electrode. CNT has good promotion effects on the direct electron transfer between HRP and the electrode surface and the SG network provides a biocompatible microenvironment for enzyme. The immobilized HRP retained its bioelectrocatalytic activity for the reduction of hydrogen peroxide and can respond to the change of concentration of H2O2 rapidly. The heterogeneous electron transfer rate constant was evaluated to be 2.8 +/- 0.4 s(-1). The amperometric response to H2O2 shows a linear relation in the range from 0.5 to 300 micromol 1(-1) and a detection limit of 0.1 micromol 1(-1) (S/N = 3). The KMapp value of HRP immobilized on the electrode surface was found to be 1.35 mmol 1(-1). The biosensor exhibited high sensitivity, rapid response and excellent long-term stability.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00449-007-0126-zDOI Listing

Publication Analysis

Top Keywords

horseradish peroxidase
8
hydrogen peroxide
8
hrp immobilized
8
electron transfer
8
electrode surface
8
micromol 1-1
8
carbon nanotube/silica
4
nanotube/silica sol-gel
4
sol-gel architecture
4
architecture immobilization
4

Similar Publications

The treatment of diabetic wounds with bacterial infection is a major challenge in the medical field. Microenvironment-responsive hydrogel dressings have shown great advantages, and photothermal antibacterial therapy is a potential antimicrobial strategy to avoid the generation of resistant bacteria. In this work, a glucose-triggered near-infrared (NIR)-responsive photothermal antibacterial hydrogel was designed and named GOGD based on a cascade reaction of glucose oxidation and polyphenol polymerization.

View Article and Find Full Text PDF

Coproantigen detection and molecular identification of Cryptosporidium species among newborn and adult farm animals.

AMB Express

January 2025

Parasitology and Animal Diseases Department, Veterinary Research Institute, National Research Centre, El Buhouth St., Dokki, Giza, Egypt.

Cryptosporidium sp. is an obligatory intracellular apicomplexan protozoan parasite that causes a disease called cryptosporidiosis with substantial veterinary and medical importance. Therefore, this study aimed to evaluate an early diagnosis of cryptosporidiosis using the anti-Cryptosporidium parvum oocyst immunoglobulin IgG polyclonal antibodies (anti-C.

View Article and Find Full Text PDF

Combining Hard Shell with Soft Core to Enhance Enzyme Activity and Resist External Disturbances.

Adv Sci (Weinh)

January 2025

Department of Cardiology, The First People's Hospital of Wenling, Wenling Hospital of Wenzhou Medical University, Wenling, Zhejiang, 317500, China.

Immobilizing enzymes onto solid supports having enhanced catalytic activity and resistance to harsh external conditions is considered as a promising and critical method of broadening enzymatic applications in biosensing, biocatalysis, and biomedical devices; however, it is considerably hampered by limited strategies. Here, a core-shell strategy involving a soft-core hexahistidine metal assembly (HmA) is innovatively developed and characterized with encapsulated enzymes (catalase (CAT), horseradish peroxidase, glucose oxidase (GOx), and cascade enzymes (CAT+GOx)) and hard porous shells (zeolitic imidazolate framework (ZIF), ZIF-8, ZIF-67, ZIF-90, calcium carbonate, and hydroxyapatite). The enzyme-friendly environment provided by the embedded HmA proves beneficial for enhanced catalytic activity, which is particularly effective in preserving fragile enzymes that will have been deactivated without the HmA core during the mineralization of porous shells.

View Article and Find Full Text PDF

Injectable biomimetic hydrogel based on modified chitosan and silk fibroin with decellularized cartilage extracellular matrix for cartilage repair and regeneration.

Int J Biol Macromol

January 2025

Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Weijin Road 94th, Tianjin 300071, PR China. Electronic address:

Cartilage defect repair remains a challenge for clinicians due to the limited self-healing capabilities of cartilage. Microenvironment-specific biomimetic hydrogels have shown great potential in cartilage regeneration because of their excellent biological properties. In this study, a hydrogel system consisting of p-hydroxybenzene propanoic acid-modified chitosan (PC), silk fibroin (SF) and decellularized cartilage extracellular matrix (DCM) was prepared.

View Article and Find Full Text PDF

Oxidized low-density lipoprotein (oxLDL) is the leading cause of atherosclerosis and cardiovascular disease development. An enzyme-linked immunosorbent assay (ELISA)-mimic system for sensitive and specific oxLDL determination was developed using selective aptamer-molecularly imprinted polymer nanoparticles (AP-MIP NP) coupled with an immunology-based colorimetric assay. The AP-MIP NP were synthesized using solid-phase molecular imprinting by incorporating aptamers into the MIP NP cavities.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!