Soil CO2 efflux in a mixed pine-oak forest in Valsaín (central Spain).

ScientificWorldJournal

Ecotoxicology of Air Pollution. Ciemat, ed 70. Avda. Complutense 22, Madrid-28040, Spain.

Published: March 2007

Soil-surface CO2 efflux and its spatial and temporal variation were investigated in a southern Mediterranean, mixed pine-oak forest ecosystem on the northern slopes of the Sierra de Guadarrama in Spain from February 2006 to July 2006. Measurements of soil CO2 efflux, soil temperatures, and moisture were conducted in nine 1963-m2 sampling plots distributed in a gradient around the ecotone between Pinus sylvestris L. and Quercus pyrenaica Lam. forest stands. Total soil organic matter, Walkey-Black C, particulate organic matter, organic matter fraction below 53 microm, total soil nitrogen content, total soil organic carbon content, and pH were also measured under three representative mature oak, pine, and mixed pine-oak forest stands. Soil respiration showed a typical seasonal pattern with minimums in winter and summer, and maximums in spring, more pronounced in oak and oak-pine stands. Soil respiration values were highest in pine stands during winter and in oak stands during spring and summer. Soil respiration was highly correlated with soil temperatures in oak and pine-oak stands when soil moisture was above a drought threshold of 15%. Below this threshold value, soil moisture was a good predictor of soil respiration in pine stands. Greater soil organic matter, particulate organic matter, Walkey-Black C, total organic C, and total N content in pine compared to oak sites potentially contributed to the greater total soil CO2 efflux in these stands during the winter. Furthermore, opposing trends in the organic matter fraction below 53 microm and soil respiration between plots suggest that in oak stands, the C forms are less affected by possible changes in use. The effects of soil properties on soil respiration were masked by differences in soil temperature and moisture during the rest of the year. Understanding the spatial and temporal variation even within small geographic areas is essential to assess C budgets at ecosystem level accurately. Thus, this study bears important implications for the study of large-scale ecosystem dynamics, particularly in response to climatic change.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5901050PMC
http://dx.doi.org/10.1100/tsw.2007.7DOI Listing

Publication Analysis

Top Keywords

organic matter
24
soil respiration
24
soil
19
co2 efflux
16
total soil
16
soil co2
12
mixed pine-oak
12
pine-oak forest
12
soil organic
12
stands soil
12

Similar Publications

The fluorescence detection of amino compounds and the evaluation of their content in environmental samples are vital, not only for assessing food quality but also for studying soil organic matter. Here, we present the synthesis and application of a novel fluorescent probe, 4-(9-acridone)benzylmethyl carbonochloride (APE-Cl), for detecting amino compounds via a chloroformate reaction with fluorescence detection. The complete derivatization reaction of APE-Cl with amino compounds can be accomplished in aqueous acetonitrile within 5 min at room temperature, using 0.

View Article and Find Full Text PDF

Viedma deracemization mechanisms in self-assembly processes.

Phys Chem Chem Phys

January 2025

Laboratoire Softmat, UMR au CNRS no 5623, Université Paul Sabatier, F-31062 Toulouse, France.

Simulations on an ODE-based model shows that there are many common points between Viedma deracemization and chiral self-assemblies of achiral building blocks towards chiral nanoparticles. Both systems occur in a closed system with energy exchange but no matter exchange with the surroundings and show parallel reversible growth mechanisms which coexist with an irreversible cluster breaking (grinding). The various mechanisms of growth give rise to the formation of polymerization/depolymerization cycles while the consecutive transformation of achiral monomer into chiral cluster results into an indirect enantioselective autocatalysis.

View Article and Find Full Text PDF

Recyclable Millable PolyureThane based on Enaminone Bonds With Upcycled Mechanical Performance.

Macromol Rapid Commun

January 2025

State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China.

Thermoplastic polyurethane (TPU) exhibits re-processable properties, but the properties of TPU is deteriorated during the reprocessing for the oxidation and degradation of polymer chains. Meanwhile, although thermoset polyurethane exhibits excellent mechanical properties, it cannot be recycled for permanent crosslinking. Hence, it's still a challenge to obtain PU which exhibits the balance between the recyclability and mechanical properties.

View Article and Find Full Text PDF

A challenging aspect in the synthesis of covalent organic frameworks (COFs) that goes beyond the framework's structure and topology is interpenetration, where two or more independent frameworks are mechanically interlocked with each other. Such interpenetrated or interlocked frameworks are commonly found in three-dimensional (3D) COFs with large pores. However, interlocked two-dimensional (2D) COFs are rarely seen in the literature, as 2D COF layers typically crystallize in stacks that maximize stabilization through π-stacking.

View Article and Find Full Text PDF

Reconstructive Phase Transition Enables Abnormal Negative Thermal Quenching of Photoluminescence in a 1D Hybrid Perovskite.

Inorg Chem

January 2025

Jiangsu Key Laboratory for Biomaterials and Devices, State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 211189, PR China.

Organic-inorganic hybrid perovskites (OIHPs) have attracted enormous attention owing to their intriguing structural tunability and diverse functional properties. Reconstructive phase transitions, involving the breaking and reconstruction of chemical bonds, have rarely been found in such materials; however, these features may induce many intriguing physical properties in optics, ferroelectrics, ferromagnetics, and so forth. Here, we utilized the weak and switchable coordination bonds of HETMA-MnCl (HETMA = (2-hydroxyethyl) trimethylammonium) to construct a 1D hybrid perovskite employing a neutral framework.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!