Effects of pulmonary ischemia on lung morphology.

Am J Physiol Lung Cell Mol Physiol

Department of Pediatrics, Johns Hopkins University, Baltimore, Maryland, USA.

Published: July 2007

Pulmonary ischemia resulting from chronic pulmonary embolism leads to proliferation of the systemic circulation within and surrounding the lung. However, it is not clear how well alveolar tissue is sustained during the time of complete pulmonary ischemia. In the present study, we investigated how pulmonary ischemia after left pulmonary artery ligation (LPAL) would alter lung mechanical properties and morphology. In this established mouse model of lung angiogenesis after chronic LPAL (10), we evaluated lung function and structure before (3 days) and after (14 days) a functional systemic circulation to the left lung is established. Age-matched naïve and sham-operated C57Bl/6 mice and mice undergoing chronic LPAL were studied. Left and right lung pressure-volume relationships were determined. Next, lungs were inflated in situ with warmed agarose (25-30 cmH(2)O) and fixed, and mean chord lengths (MCL) of histological sections were quantified. MCL of naïve mice averaged 43.9 +/- 1.8 mum. No significant changes in MCL were observed at either time point after LPAL. Left lung volumes and specific compliances were significantly reduced 3 days after LPAL. However, by 14 days after LPAL, lung pressure-volume relationships were not different from controls. These results suggest that severe pulmonary ischemia causes changes in lung mechanics early after LPAL that are reversed by the time a new systemic vasculature is known to perfuse pulmonary capillaries. The LPAL model thus affords a unique opportunity to study lung functional responses to tissue ischemia and subsequent recovery.

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajplung.00398.2006DOI Listing

Publication Analysis

Top Keywords

pulmonary ischemia
20
left lung
12
lung
11
systemic circulation
8
lpal
8
chronic lpal
8
lung pressure-volume
8
pressure-volume relationships
8
days lpal
8
pulmonary
7

Similar Publications

Currently, the barrier to successful lung transplantation is ischemia and reperfusion injury, which can lead to the development of bronchiolitis obliterans. Paclitaxel and methotrexate are drugs known to inhibit cell proliferation and have anti-inflammatory effects, and the association of these drugs with cholesterol-rich nanoparticles has been shown to be beneficial in the treatment of other transplanted organs. Thirty-three male Sprague Dawley rats were divided into 3 groups: Basal group, no intervention; Control group, received only nanoparticles; Drug group, paclitaxel and methotrexate treatment.

View Article and Find Full Text PDF

Protective effect of sub-hypothermic mechanical perfusion combined with membrane lung oxygenation on a yorkshire model of brain injury after traumatic blood loss.

Chin J Traumatol

December 2024

Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Department of Orthopedics, The Fourth Medical Center, Chinese PLA General Hospital, Beijing, 100048, China. Electronic address:

Purpose: To investigate the protective effect of sub-hypothermic mechanical perfusion combined with membrane lung oxygenation on ischemic hypoxic injury of yorkshire brain tissue caused by traumatic blood loss.

Methods: This article performed a random controlled trial. Brain tissue of 7 yorkshire was selected and divided into the sub-low temperature anterograde machine perfusion group (n = 4) and the blank control group (n = 3) using the random number table method.

View Article and Find Full Text PDF

The Role of Nitric oxide in the sweep gas for patients receiving Extracorporeal Membrane Oxygenation or Cardiopulmonary Bypass.

Can J Cardiol

December 2024

Senior Paediatric Intensivist - Department of Paediatric Intensive Care, Royal Children's Hospital, Melbourne, Australia; Professor - Department of Critical Care, Faculty of Medicine, Dentistry & Health Sciences, University of Melbourne, Melbourne, Australia; Group Leader - ICU Research Clinical Sciences Theme MCRI, Melbourne, Australia. Electronic address:

Nitric oxide (NO) was proclaimed the 1992 "molecule of the year" by Culotta in Science magazine because of its importance in neuroscience, physiology and immunology. Inhaled NO has been in clinical use for over 35 years to decrease pulmonary hypertension and improve oxygenation. Over the last 20 years there has been much research to understand the role of nitric oxide on cell surface receptors, mitochondria, and intracellular processes which involve calcium and superoxide radicals.

View Article and Find Full Text PDF

Oxidative stress and inflammation are indispensable components of ischemia-reperfusion (IR) injury. In this study, we investigated the effects of low and high doses of caftaric acid (CA) on reducing kidney and remote organ damage induced by IR. We divided Wistar rats into four groups: sham, IR, low (40 mg/kg body weight (BW)), and high (80 mg/kg BW) CA groups.

View Article and Find Full Text PDF

Background: Lung transplantation is a viable lifesaving option for patients with diffuse pulmonary arteriovenous malformations (AVMs). We present a case of diffuse pulmonary AVMs associated with juvenile polyposis and hereditary hemorrhagic telangiectasia (JP-HHT) that was successfully managed by lung transplantation.

Case Presentation: A 19-year-old woman developed severe hypoxemia due to pulmonary AVMs diagnosed at 4 years of age.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!