In an age of comparative microbial genomics, knowledge of the near-native architecture of microorganisms is essential for achieving an integrative understanding of physiology and function. We characterized and compared the three-dimensional architecture of the ecologically important cyanobacterium Prochlorococcus in a near-native state using cryo-electron tomography and found that closely related strains have diverged substantially in cellular organization and structure. By visualizing native, hydrated structures within cells, we discovered that the MED4 strain, which possesses one of the smallest genomes (1.66 Mbp) of any known photosynthetic organism, has evolved a comparatively streamlined cellular architecture. This strain possesses a smaller cell volume, an attenuated cell wall, and less extensive intracytoplasmic (photosynthetic) membrane system compared to the more deeply branched MIT9313 strain. Comparative genomic analyses indicate that differences have evolved in key structural genes, including those encoding enzymes involved in cell wall peptidoglycan biosynthesis. Although both strains possess carboxysomes that are polygonal and cluster in the central cytoplasm, the carboxysomes of MED4 are smaller. A streamlined cellular structure could be advantageous to microorganisms thriving in the low-nutrient conditions characteristic of large regions of the open ocean and thus have consequences for ecological niche differentiation. Through cryo-electron tomography we visualized, for the first time, the three-dimensional structure of the extensive network of photosynthetic lamellae within Prochlorococcus and the potential pathways for intracellular and intermembrane movement of molecules. Comparative information on the near-native structure of microorganisms is an important and necessary component of exploring microbial diversity and understanding its consequences for function and ecology.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1913349 | PMC |
http://dx.doi.org/10.1128/JB.01948-06 | DOI Listing |
Gels
November 2024
Physics Department, Lomonosov Moscow State University, 119991 Moscow, Russia.
Bio-based eco-friendly cellulose nanocrystals (CNCs) gain an increasing interest for diverse applications. We report the results of an investigation of hydrogels spontaneously formed by the self-assembly of carboxylated CNCs in the presence of CaCl using several complementary techniques: rheometry, isothermal titration calorimetry, FTIR-spectroscopy, cryo-electron microscopy, cryo-electron tomography, and polarized optical microscopy. Increasing CaCl concentration was shown to induce a strong increase in the storage modulus of CNC hydrogels accompanied by the growth of CNC aggregates included in the network.
View Article and Find Full Text PDFDev Cell
December 2024
Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany; Cell Biology and Biophysics Unit, EMBL, 69117 Heidelberg, Germany. Electronic address:
Centrosomes organize microtubules that are essential for mitotic divisions in animal cells. They consist of centrioles surrounded by pericentriolar material (PCM). Questions related to mechanisms of centriole assembly, PCM organization, and spindle microtubule formation remain unanswered, partly due to limited availability of molecular-resolution structural data inside cells.
View Article and Find Full Text PDFHIV is a lentivirus characterized by the formation of its mature core. Visualization and structural examination of HIV requires purification of virions to high concentrations. The yield and integrity of these virions are crucial for ensuring a uniform representation of all viral particles in subsequent analyses.
View Article and Find Full Text PDFJ Struct Biol
December 2024
Program in Cellular and Molecular Medicine, Boston Children's Hospital, 200 Longwood Ave, Boston, MA 02115, USA; Department of Cell Biology, Harvard Medical School, 200 Longwood Ave, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, 200 Longwood Ave, Boston, MA 02115, USA. Electronic address:
Cryogenic electron tomography (cryo-ET) has rapidly advanced as a high-resolution imaging tool for visualizing subcellular structures in 3D with molecular detail. Direct image inspection remains challenging due to inherent low signal-to-noise ratios (SNR). We introduce CryoSamba, a self-supervised deep learning-based model designed for denoising cryo-ET images.
View Article and Find Full Text PDFElife
December 2024
Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands.
Segmentation is a critical data processing step in many applications of cryo-electron tomography. Downstream analyses, such as subtomogram averaging, are often based on segmentation results, and are thus critically dependent on the availability of open-source software for accurate as well as high-throughput tomogram segmentation. There is a need for more user-friendly, flexible, and comprehensive segmentation software that offers an insightful overview of all steps involved in preparing automated segmentations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!