The renin-angiotensin system (RAS) has been implicated in the cardiovascular complications of diabetes. We showed that a high-fructose diet increases blood pressure and plasma angiotensin and impairs glucose tolerance. We investigated the role of angiotensin AT(1a) receptors in the development of fructose-induced cardiovascular and metabolic dysfunction. Male angiotensin AT(1a) knockout (AT1aKO) and wild-type (AT1aWT) mice with arterial telemetric catheters were fed a standard diet or one containing 60% fructose. Fructose increased mean arterial pressure (MAP) in AT1aWT but only during the dark phase (8% increase). In AT1aKO mice, fructose unexpectedly decreased MAP, during both light and dark periods (24 and 13% decrease, respectively). Analytical methods were used to measure systolic arterial pressure (SAP) and pulse interval (PI) variability in time and frequency domains. In fructose-fed AT1aWT mice, there was an increase in SAP variance and its low-frequency (LF) domain (11 +/- 3 vs. 23 +/- 4 mmHg(2), variance, and 7 +/- 2 vs. 17 +/- 3 mmHg(2), LF, control vs. fructose, P < 0.004). There were no changes in SAP variance in AT1aKO mice. Depressor responses to alpha(1)-adrenergic blockade were augmented in fructose-fed AT1a WT compared with AT1aKO mice. Fructose inhibited glucose tolerance with a greater effect in AT1aWT mice. Fructose increased plasma cholesterol in both groups (P < 0.01) and reduced ANG II in AT1aKO mice. Results document prominent interactions between genetics and diet with data showing that in the absence of angiotensin AT(1a) receptors, a fructose diet decreased blood pressure.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/ajpheart.00106.2006 | DOI Listing |
Commun Biol
November 2024
Center for Neuroinflammation and Cardiometabolic Diseases, Georgia State University, Atlanta, GA, USA.
Activation of microglia, the resident immune cells of the central nervous system, leading to the subsequent release of pro-inflammatory cytokines, has been linked to cardiac remodeling, autonomic disbalance, and cognitive deficits in heart failure (HF). While previous studies emphasized the role of hippocampal Angiotensin II (AngII) signaling in HF-induced microglial activation, unanswered mechanistic questions persist. Evidence suggests significant interactions between microglia and local microvasculature, potentially affecting blood-brain barrier integrity and cerebral blood flow regulation.
View Article and Find Full Text PDFAm J Physiol Renal Physiol
December 2024
Tulane Hypertension and Renal Center of Excellence and Department of Physiology, Tulane University School of Medicine, New Orleans, Louisiana, United States.
In the proximal tubules of the kidney, angiotensin II (ANG II) binds and activates ANG II type 1 (AT) receptors to stimulate proximal tubule Na reabsorption, whereas atrial natriuretic peptide (ANP) binds and activates natriuretic peptide receptors (NPR) to inhibit ANG II-induced proximal tubule Na reabsorption. These two vasoactive systems play important counteracting roles to control Na reabsorption in the proximal tubules and help maintain blood pressure homeostasis. However, how AT and NPR receptors interact in the proximal tubules and whether natriuretic effects of NPR receptor activation by ANP may be potentiated by deletion of AT (AT) receptors selectively in the proximal tubules have not been studied previously.
View Article and Find Full Text PDFPeerJ
September 2024
Nephrology, Shenzhen Second People's Hospital, Shenzhen, Guangdong, China.
Background: Fibrosis after nephrotoxic injury is common. Activation of the paraventricular nucleus (PVN) renin-angiotensin system (RAS) and sympathetic nervous system (SNS) are common mechanism of renal fibrosis. However, there have limited knowledge about which brain regions are most affected by Angiotensin II (Ang II) after nephrotoxic injury, what role does Angiotensin II type 1a receptors (AT1R) signaling play and how this affects the outcomes of the kidneys.
View Article and Find Full Text PDFActivation of microglia, the resident immune cells of the central nervous system, leading to the subsequent release of pro-inflammatory cytokines, has been linked to cardiac remodeling, autonomic disbalance, and cognitive deficits in heart failure (HF). While previous studies emphasized the role of hippocampal Angiotensin II (AngII) signaling in HF-induced microglial activation, unanswered mechanistic questions persist. Evidence suggests significant interactions between microglia and local microvasculature, potentially affecting blood-brain barrier integrity and cerebral blood flow regulation.
View Article and Find Full Text PDFJ Biol Chem
February 2024
Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA. Electronic address:
Increased expression of angiotensin II AT receptor (encoded by Agtr1a) and Na-K-Cl cotransporter-1 (NKCC1, encoded by Slc12a2) in the hypothalamic paraventricular nucleus (PVN) contributes to hypertension development. However, little is known about their transcriptional control in the PVN in hypertension. DNA methylation is a critical epigenetic mechanism that regulates gene expression.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!