Supercritical fluid chromatography of metoprolol and analogues on aminopropyl and ethylpyridine silica without any additives.

J Chromatogr A

Analytical Development, Pharmaceutical and Analytical R & D, AstraZeneca R & D Mölndal, S-431 83 Mölndal, Sweden.

Published: June 2007

Metoprolol and a number of related amino alcohols and similar analytes have been chromatographed on aminopropyl (APS) and ethylpyridine (EPS) silica columns. The mobile phase was carbon dioxide with methanol as modifier and no amine additive was present. Optimal isocratic conditions for the selectivity were evaluated based on experiments using design of experiments. A central composite circumscribed model for each column was used. Factors were column temperature, back-pressure and % (v/v) of modifier. The responses were retention and selectivity versus metoprolol. The % of modifier mainly controlled the retention on both columns but pressure and temperature could also be important for optimizing the selectivity between the amino alcohols. The compounds could be divided into four and five groups on both columns, with respect to the selectivity. Furthermore, on the aminopropyl silica the analytes were more spread out whereas on the ethylpyridine silica, due to its aromaticity, retention and selectivity were closer. For optimal conditions the column temperature and back-pressure should be high and the modifier concentration low. A comparison of the selectivity using optimized conditions show a few switches of retention order between the two columns. On aminopropyl silica an aldehyde failed to be eluted owing to Schiff-base formation. Peak symmetry and column efficiency were briefly studied for some structurally close analogues. This revealed some activity from the columns that affected analytes that had less protected amino groups, a methyl group instead of isopropyl. The tailing was more marked with the ethylpyridine column even with the more bulky alkyl substituents. Plate number N was a better measure than the asymmetry factor since some analyte peaks broadened without serious deterioration of symmetry compared to homologues.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chroma.2007.02.028DOI Listing

Publication Analysis

Top Keywords

ethylpyridine silica
8
amino alcohols
8
column temperature
8
temperature back-pressure
8
retention selectivity
8
aminopropyl silica
8
selectivity
6
silica
5
columns
5
column
5

Similar Publications

The retention of three peptides was studied under analytical and overloaded conditions at different concentrations of trifluoroacetic acid (TFA) and water added to the co-solvent methanol (MeOH). Four columns with different stationary phase properties, i.e.

View Article and Find Full Text PDF

This work is dedicated to the investigation of additives effects on retention mechanisms in supercritical fluid chromatography. Additives are compounds which are added to the mobile phase in small quantities and greatly affect retention factors, peak shape, separation selectivity and other chromatographic parameters. Linear free energy relationship (LFER) method with an expanded set of descriptors including the ones taking ionic interactions into account was used to probe the effect of four types of additive: trifluoroacetic acid, diethylamine, ammonium acetate and water - on retention on four polar stationary phase bearing different functional groups: bare silica, cyano, 2-ethylpyridine and zwitter-ionic sulfobetaine.

View Article and Find Full Text PDF

The effect of column history in supercritical fluid chromatography: Practical implications.

J Chromatogr A

August 2021

Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic. Electronic address:

Long-term stability of retention times of a wide range of analytes has been evaluated using eight different stationary phases. These were from a single manufacturer to minimize the differences in silanol activity caused by the manufacturing process. The tested stationary phases included bridge ethylene hybrid, 2-ethylpyridine bridge ethylene hybrid with direct modification of silica particles, bidentate crosslinked charged surface hybrid fluorophenyl, bidentate crosslinked high strength silica C18, and propanediol linked phases including diol (pure propanediol linker), and three phases based on diol further modified with 2-picolylamine, diethylamine, and 1-aminoanthracene group.

View Article and Find Full Text PDF

The use of stationary-phase optimized selectivity in liquid chromatography (SOS-LC) was shown to be successful for HPLC to analyze complex mixtures using a Phase OPtimized Liquid Chromatography (POPLC) kit. This commercial kit contains five stationary-phase types of varying lengths, which can be coupled to offer an improved separation of compounds. Recently, stationary-phase optimized selectivity supercritical fluid chromatography (SOS-SFC) has been introduced, transferring the methodology to SFC.

View Article and Find Full Text PDF

Four polar stationary phases (ethylene-bridged hybrid silica, cyanopropyl, 2-ethylpyridine, and zwitterionic sulfobetaine) have been characterized in supercritical fluid chromatography (SFC) by linear free energy relationships (LFER) method with an extended set of Abraham's descriptors. Temperature (25-55 °C) and pressure (110-180 bar) effects on analyte retention, separation selectivity and LFER-coefficients of chromatographic systems have been studied using the 89 test compounds of various chemical classes and carbon dioxide - methanol (9:1 v/v) binary solvent as a mobile phase. It was found that for the selected stationary phases temperature and pressure had only moderate effects on selectivity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!