Bid, a caspase-activated proapoptotic BH3-only protein, is essential for Fas-induced hepatocyte destruction. Recent studies published in Cell produced conflicting results, indicating that loss of Bid either protects or enhances apoptosis induced by DNA damage or replicative stress. To resolve this controversy, we generated novel Bid-deficient mice on an inbred C57BL/6 background and removed the drug-selection cassette from the targeted locus. Nine distinct cell types from these Bid-deficient mice underwent cell-cycle arrest and apoptosis in a manner indistinguishable from control WT cells in response to DNA damage or replicative stress. Moreover, we found that even cells from the original Bid-deficient mice responded normally to these stimuli, indicating that differences in genetic background or the presence of a strong promoter within the targeted locus are unlikely to explain the differences between our results and those reported previously. We conclude that Bid has no role in DNA damage- or replicative stress-induced apoptosis or cell-cycle arrest.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cell.2007.03.017 | DOI Listing |
Breast Cancer Res Treat
January 2025
Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, 6205, Bangladesh.
Background: Globally, Breast Cancer (BC) is the most frequent cancer in women and has a major negative impact on the physical and emotional well-being of its patients as well as one of the most common cancers to be diagnosed. Numerous studies have been published to identify various molecular pathways, including PI3K/AKT/PTEN. Moreover, growing evidence suggests that miRNAs have been found to play a vital role in the growth and carcinogenesis of tumors.
View Article and Find Full Text PDFCancer Chemother Pharmacol
January 2025
Institute of Medicine, Chung-Shan Medical University, Taichung, 40201, Taiwan.
Objective: Based on our previous research, which demonstrated that elevated plasma endoglin (ENG) levels in lung cancer patients were associated with a better prognosis, increased sensitivity to pemetrexed, and enhanced tumor suppression, this study aims to validate these findings at the cellular level. The focus is on membrane and extracellular ENG and their influence on drug response and tumor cell behavior in non-small cell lung cancer (NSCLC) cells.
Methods: The correlation between ENG expression and pemetrexed-induced cytotoxicity in eight human non-squamous subtype NSCLC cell lines was analyzed.
Cells
December 2024
Department of Cell Signaling, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan.
The Hippo pathway, a kinase cascade, coordinates with many intracellular signals and mediates the regulation of the activities of various downstream transcription factors and their coactivators to maintain homeostasis. Therefore, the aberrant activation of the Hippo pathway and its associated molecules imposes significant stress on tissues and cells, leading to cancer, immune disorders, and a number of diseases. Cellular senescence, the mechanism by which cells counteract stress, prevents cells from unnecessary damage and leads to sustained cell cycle arrest.
View Article and Find Full Text PDFBlood
December 2024
St. Jude Children's Research Hospital, Memphis, Tennessee, United States.
Inotuzumab Ozogamicin (InO) is an antibody-calicheamicin conjugate with striking efficacy in B-cell acute lymphoblastic leukemia (B-ALL). However, there is wide inter-patient variability in treatment response, and the genetic basis of this variation remains largely unknown. Using a genome-wide CRISPR screen, we discovered the loss of DNTT as a primary driver of InO resistance.
View Article and Find Full Text PDFInvestig Clin Urol
January 2025
Basic-Clinic Convergence Research Institute, University of Ulsan, Ulsan, Korea.
Purpose: Developmentally regulated GTP-binding protein 2 (DRG2) regulates microtubule dynamics and G2/M arrest during docetaxel treatment. Poly ADP-ribose polymerase (PARP) acts as an important repair system for DNA damage caused by docetaxel treatment. This study investigated whether DRG2 expression affects response to PARP inhibitors (olaparib) using prostate cancer cell lines PC3, DU145, LNCaP-FGC, and LNCaP-LN3.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!