Purpose: To examine the in vivo antitumor efficacy of X-irradiation combined with administration of a ribonucleoside anticancer drug, 1-(3-C-ethynyl-beta-D-ribo-pentofuranosyl)cytosine (TAS106, ECyd), to tumor cell-transplanted mice.

Methods And Materials: Colon26 murine rectum adenocarcinoma cells and MKN45 human gastric adenocarcinoma cells were inoculated into the footpad in BALB/c mice and severe combined immunodeficient mice, respectively. They were treated with a relatively low dose of X-irradiation (2 Gy) and low amounts of TAS106 (0.1 mg/kg and 0.5 mg/kg). The tumor growth was monitored by measuring the tumor volume from Day 5 to Day 16 for Colon26 and from Day 7 to Day 20 for MKN45. Histologic analyses for proliferative and apoptotic cells in the tumors were performed using Ki-67 immunohistochemical and terminal deoxynucleotidyl transferase-mediated nick end labeling staining. The expression of survivin, a key molecule related to tumor survival, was assessed by quantitative polymerase chain reaction and immunohistochemical analysis.

Results: When X-irradiation and TAS106 treatment were combined, significant inhibition of tumor growth was observed in both types of tumors compared with mice treated with X-irradiation or TAS106 alone. Marked inhibition of tumor growth was observed in half of the mice that received the combined treatment three times at 2-day intervals. Parallel to these phenomena, the suppression of survivin expression and appearance of Ki-67-negative and apoptotic cells were observed.

Conclusions: X-irradiation and TAS106 effectively suppress tumor growth in mice. The inhibition of survivin expression by TAS106 is thought to mainly contribute to the suppression of the tumor growth.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijrobp.2006.12.061DOI Listing

Publication Analysis

Top Keywords

tumor growth
20
x-irradiation tas106
12
tumor
9
ribonucleoside anticancer
8
anticancer drug
8
tas106 effectively
8
adenocarcinoma cells
8
mice treated
8
day day
8
apoptotic cells
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!