The relaxivity of commercially available gadolinium (Gd)-based contrast agents was studied for X-nuclei resonances with long intrinsic relaxation times ranging from 6 s to several hundred seconds. Omniscan in pure 13C formic acid had a relaxivity of 2.9 mM(-1) s(-1), whereas its relaxivity on glutamate C1 and C5 in aqueous solution was approximately 0.5 mM(-1) s(-1). Both relaxivities allow the preparation of solutions with a predetermined short T1 and suggest that in vitro substantial sensitivity gains in their measurement can be achieved. 6Li has a long intrinsic relaxation time, on the order of several minutes, which was strongly affected by the contrast agents. Relaxivity ranged from approximately 0.1 mM(-1) s(-1) for Omniscan to 0.3 for Magnevist, whereas the relaxivity of Gd-DOTP was at 11 mM(-1) s(-1), which is two orders of magnitude higher. Overall, these experiments suggest that the presence of 0.1- to 10-microM contrast agents should be detectable, provided sufficient sensitivity is available, such as that afforded by hyperpolarization, recently introduced to in vivo imaging.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2039890 | PMC |
http://dx.doi.org/10.1016/j.mri.2007.02.015 | DOI Listing |
Front Vet Sci
January 2025
Anderson Moores Veterinary Specialists, Linnaeus Veterinary Limited, Winchester, United Kingdom.
Infectious meningoencephalitides represent an important differential diagnosis for meningoencephalitis of unknown origin (MUO) in dogs. Treatment of the latter requires immunosuppression, but laboratory test results for infectious agents may take several days to return. This study investigated whether the presence of masticatory muscle changes on magnetic resonance imaging (MRI) of the head can be used to distinguish dogs with neosporosis from those with MUO at the time of diagnosis.
View Article and Find Full Text PDFQuant Imaging Med Surg
January 2025
Department of Radiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
Background: The bolus tracking technique has been used for decades, yet still faces the challenging task of determining the optimal scanning time for individuals. Our study aimed to assess the feasibility of a novel bolus tracking method with a personalized post-trigger delay (PTD) to optimize scanning time and achieve optimized enhancement and contrast homogeneity in aortic computed tomography angiography (CTA).
Methods: Participants undergoing aortic CTA with bolus tracking were prospectively assigned to two different groups: Group A with a fixed 6-second PTD and Group B with a personalized PTD.
Quant Imaging Med Surg
January 2025
Radiology and Nuclear Medicine Department, Erasmus MC, Rotterdam, The Netherlands.
Background: Gadolinium-based contrast agents (GBCAs) are usually employed for glioma diagnosis. However, GBCAs raise safety concerns, lead to patient discomfort and increase costs. Parametric maps offer a potential solution by enabling quantification of subtle tissue changes without GBCAs, but they are not commonly used in clinical practice due to the need for specifically targeted sequences.
View Article and Find Full Text PDFJ Mater Chem B
January 2025
Department of Radiology, Huaxi MR Research Center (HMRRC), Institution of Radiology and Medical Imaging, Breast Center, Institute of Breast Health Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China.
Development of novel Gd-based contrast agents for targeted magnetic resonance imaging (MRI) of liver cancer remains a great challenge. Herein we reported a novel Gd-based MRI contrast agent with improved relaxivity for specifically diagnosing liver cancer. This GSH-responsive macromolecular contrast agent (mCA), POLDGd, was prepared by RAFT polymerization, and its lactic acid moiety could precisely target the ASGP-R surface protein on liver cancer cells, whereas PODGd without the lactic acid moiety was prepared as a control.
View Article and Find Full Text PDFJ Neuroimaging
January 2025
Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, California, USA.
Background And Purpose: The central vein sign (CVS) is a diagnostic imaging biomarker for multiple sclerosis (MS). FLAIR* is a combined MRI contrast that provides high conspicuity for CVS at 3 Tesla (3T), enabling its sensitive and accurate detection in clinical settings. This study evaluated whether CVS conspicuity of 3T FLAIR* is reliable across imaging sites and MRI vendors and whether gadolinium (Gd) contrast increases CVS conspicuity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!