A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Ethanolamine and related amino alcohols increase basal and evoked release of [3H]-D-aspartic acid from synaptosomes by enhancing the filling of synaptic vesicles. | LitMetric

This research examines the effects of ethanolamine and other amino alcohols on the dynamics of acridine orange (AO), oxonol V, and [3H]-D-aspartic acid in synaptic preparations isolated from mammalian brain. Ethanolamine concentration-dependently enhanced AO release from synaptosomes. Similar effects were observed with methylethanolamine and dimethylethanolamine, but not choline. The enhancement of AO efflux by ethanolamine was independent of extrasynaptosomal calcium (in contrast to KCl-induced AO efflux), was unaffected by tetrodotoxin and did not involve depolarization of the synaptosomal plasma membrane. KCl was unable to release AO from synaptosomes following exposure to ethanolamine, however ethanolamine and other amino alcohols were found to enhance both basal and KCl-evoked release of [3H]-D-aspartic acid from synaptosomes. Using isolated synaptic vesicles we demonstrate that amino alcohols are able to 1) abolish the ATP-dependent intravesicular proton concentration (i.e. stimulate efflux of AO) in a similar way to carbonyl cyanide m-chlorophenylhydrazone (CCCP), 2) increase the ATP-supported transvesicular membrane potential (i.e. quench oxonol V fluorescence) in contrast to CCCP and 3) enhance intravesicular uptake of [3H]-D-aspartic acid. These results suggest that positively charged, membrane impermeant amino alcohol species are generated within synaptic vesicles as they sequester protons. Cationic forms of these amino alcohols boost the transvesicular electrical potential which increases transmitter uptake into synaptic vesicles and facilitates enhancement of basal and evoked release of transmitter. Our data suggest a potential role for ethanolamine and related amino alcohols in the regulation of synaptic vesicle filling. These findings may also have relevance to neuropathophysiological states involving altered production of ethanolamine.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejphar.2007.03.020DOI Listing

Publication Analysis

Top Keywords

amino alcohols
24
ethanolamine amino
16
[3h]-d-aspartic acid
16
synaptic vesicles
16
ethanolamine
8
basal evoked
8
evoked release
8
release [3h]-d-aspartic
8
acid synaptosomes
8
release synaptosomes
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!