Cellular dedifferentiation underlies topical issues in biology such as regeneration and nuclear cloning and has common features in plants and animals. In plants, this process characterizes the transition of differentiated leaf cells to protoplasts (plant cells devoid of cell walls) and is accompanied by global chromatin reorganization associated with reprogramming of gene expression. A screen for mutants defective in proliferation and callus formation identified kyp-2-a mutant in the KRYPTONITE (KYP)/SUVH4 gene encoding a histone H3 lysine 9 (H3K9) methyltransferase. Analysis of telomere length revealed stochastic telomerase-independent lengthening of telomeres in wild type but not in kyp-2 protoplasts. In kyp-2 mutant, telomeric repeats were no longer associated with dimethylated H3K9. The Arabidopsis telomerase reverse transcriptase (tert) mutant displayed accelerated proliferation despite its short telomeres, though it also showed accelerated cell death. Microarray analysis uncovered several components of the ubiquitin proteolytic system, which are downregulated in kyp-2 compared to wild-type protoplasts. Thus, our results suggest that histone methylation activity is required for the establishment/maintenance of the dedifferentiated state and/or reentry into the cell cycle, at least partly, through activation of genes whose products are involved in the ubiquitin proteolytic pathway. In addition, our results illuminate the complexity of cellular dedifferentiation, particularly the occurrence of DNA recombination that can lead to genome instability.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ydbio.2007.03.023 | DOI Listing |
J Exp Clin Cancer Res
January 2025
Hepatology Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, Pamplona, Spain.
Background: Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive cancer with limited treatment options and a poor prognosis. The critical role of epigenetic alterations such as changes in DNA methylation, histones modifications, and chromatin remodeling, in pancreatic tumors progression is becoming increasingly recognized. Moreover, in PDAC these aberrant epigenetic mechanisms can also limit therapy efficacy.
View Article and Find Full Text PDFNat Chem Biol
January 2025
Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Medical Epigenetics, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
Chromatin and transcription regulators are critical to defining cell identity through shaping epigenetic and transcriptional landscapes, with their misregulation being closely linked to oncogenesis. Pharmacologically targeting these regulators, particularly the transcription-activating BET proteins, has emerged as a promising approach in cancer therapy, yet intrinsic or acquired resistance frequently occurs, with poorly understood mechanisms. Here, using genome-wide CRISPR screens, we find that BET inhibitor efficacy in mediating transcriptional silencing and growth inhibition depends on the auxiliary/arm/tail module of the Integrator-PP2A complex (INTAC), a global regulator of RNA polymerase II pause-release dynamics.
View Article and Find Full Text PDFBiomed Pharmacother
January 2025
Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou 646000, China; Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou 646000, China; Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou 646000, China. Electronic address:
The interaction between renal intrinsic cells and macrophages plays a crucial role in the onset and progression of kidney diseases. In recent years, epigenetic mechanisms such as DNA methylation, histone modification, and non-coding RNA regulation have become essential windows for understanding these processes. This review focuses on how renal intrinsic cells (including tubular epithelial cells, podocytes, and endothelial cells), renal cancer cells, and mesenchymal stem cells influence the function and polarization status of macrophages through their own epigenetic alterations, and how the epigenetic regulation of macrophages themselves responds to kidney damage, thus participating in renal inflammation, fibrosis, and repair.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States.
Lysine demethylases (KDMs) catalyze the oxidative removal of the methyl group from histones using earth-abundant iron and the metabolite 2-oxoglutarate (2OG). KDMs have emerged as master regulators of eukaryotic gene expression and are novel drug targets; small-molecule inhibitors of KDMs are in the clinical pipeline for the treatment of human cancer. Yet, mechanistic insights into the functional heterogeneity of human KDMs are limited, necessitating the development of chemical probes for precision targeting.
View Article and Find Full Text PDFJ Mol Endocrinol
January 2025
M Datta, Functional Genomics, CSIR - Institute of Genomics and Integrative Biology, New Delhi, India.
Delayed wound closure is a significant hallmark associated with diabetes. A previous study from our laboratory identified decreased levels of Dicer and miRNAs together with altered levels of wound healing genes in the wounded tissues of diabetic rats. Comprehensive regulators of these wound healing genes mapped onto the PRC2 (polycomb repressive complex 2) complex.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!